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Reminder of Last Time and Plan for the Day

Plan

Last time
Neural Tangent Kernels
A generalization bound for the NTK

Today: A different type of generalization bounds: PAC Bayes.

Reading Material:
User-friendly introduction to PAC-Bayes bounds, Pierre Alquier
Computing Nonvacuous Generalization Bounds for Deep (Stochastic)
Neural Networks with Many More Parameters than Training Data,
Dziugaite and Roy
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Reminder of Last Time and Plan for the Day

Reminder: generalization bounds for finite classes

Setting for today, binary classification with the 0-1 loss. In particular the
loss is bounded in [0, 1].

Reminder: Union bound + Hoeffding

If the hypothesis classH is finite, then with probability at least 1− δ,

for all h ∈ H, R(h)− RS(h) ⩽

√
log |H|+ log(1/δ)

2n

In particular, if we use an ERM, then the resulting classifier is Probably
Approximately Correct, in the sense that it is probably almost as good
as the best classifier inH.

With enough data points, n ⩾ log |H| and learning occurs... but in practice
n≪ log |H|. Then the bound above says nothing since we know already
that R(h) ⩽ 1.
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Reminder of Last Time and Plan for the Day

Vacuous bounds

Issue 0: we use infinite classes of classifiers. Even taking finite precision
of computers into account, for a model on MNIST with three hidden
layers with 100 nodes each, we have
784× 100 + 2× 100× 100 + 100× 10 + 310 = 99 710 trainable
parameters, so

log |H| ⩽ log 232×99 710 ≈ 2.2× 106 .

So the union bounds guarantees that you can learn on MNIST using an
MLP if you have millions of data points.

First direction of improvement: taking the structure ofH into account,
and deriving bounds that depend on a better notion of model complexity
than log |H|.
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Reminder of Last Time and Plan for the Day

Reminder 2: Model complexity bounds are still vacuous

Pure Rademacher complexity bound

With probability at least 1− δ,

for all h ∈ H, R(h)− RS(h) ⩽ 2RS(H) +
√

2 log(2/δ)
2n

Issue 1: Neural nets operate well in regimes in which they interpolate any
kind of data, i.e., in whichRS(H) ≈ 1.

If we want to explain deep learning in practical regimes, generalization
bounds need to be data-dependent or algorithm-dependent.

We discussed a data-dependent improvement on Rademacher
complexity bounds for kernel linear regression that can explain
generalization in some regimes, in which neural nets stay close to their
initialization.
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Reminder of Last Time and Plan for the Day

Another type of improvement: non uniform bounds

We are not really interested in any h ∈ H, only on the output of our
training algorithm. Idea: Make it non-uniform.

Given a distribution over the classifiers P, called a prior by analogy with
Bayesian thinking.

Union bound with a prior

Let P be a probability distribution overH. With probability at least 1− δ,

for any h ∈ H R(h)− RS(h) ⩽

√
log(1/P(h)) + log(1/δ)

2n

P needs to be chosen before observing the data.

We recover the standard bound with a uniform prior. If P puts a lot of
weight on the output of our algorithm, then the generalization bound is
tight. (But if we could predict the outcome of the algorithm before seeing
the data, then generalization should be easy. )
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Reminder of Last Time and Plan for the Day

PAC-Bayes bounds

Modify the PAC learning framework to incorporate distributions overH:
A prior P measuring the belief that a hypothesis is good before
seeing the data
A posterior Q updated from the data.

PAC-Bayes style generalization bounds

Given a prior P, with probability at least 1− δ,

for any posterior Q, d(R(Q),RS(Q)) ⩽ f (P,Q, δ, . . . )

Notation: R(Q) =

∫
R(h)dQ(h) and RS(Q) =

∫
RS(h)dQ(h)

(Be careful if you know about Bayesian statistics, this is quite different.)

Most important conceptual shift is the movement to distributions over
hypotheses, a.k.a. stochastic classifiers.
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Why PAC-Bayes bounds?

By optimizing over posteriors, PAC-Bayes bounds give the tightest
generalization bounds for multiple settings.

In particular, they provide the only known non-vacuous generalization
bounds for deep neural networks in practically relevant regimes (e.g. on
MNIST).

Stochatic estimators can sometimes be derandomized, although
derandomizing bounds in a tight way for neural nets is still open.
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Aside: measuring difference between distributions

Definition (Kullback-Leibler divergence)

Let P and Q be two probability distributions, then

KL(Q,P) =


∫

log
(dQ

dP

)
dQ if P ≪ Q

+∞ otherwise

Kullback-Leibler is not a distance
not symmetric
no triangle inequality

Better interpretation is that Kullback-Leibler is a measure of
’How surprised you are if you think a variable has distribution P but its
true distribution is Q’.
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Useful facts about the Kullback-Leibler divergence

Pinsker’s inequality

sup
A event

|Q(A)− P(A)| ⩽
√

KL(Q,P)

2

Duality / Donsker-Varadhan

KL(Q,P) = sup
X bounded

{
EP [X ]− logEQ[e

X ]
}

Joint convexity

KL

(
Q1 + Q2

2
,

P1 + P2

2

)
⩽

KL(Q1,P1) + KL(Q2,P2)

2
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Special KLs

Bernoulli KL
For any p, q ∈ [0, 1],

KL
(
Ber(q),Ber(p)

)
= q log

q
p
+ (1− q) log

1− q
1− p

and we denote by this by kl(q, p).

Gaussian KL
If P = N (wp, σ

2) and Q = N (wq , σ
2), then

KL
(
Q,P

)
=

(wq − wp)
2

2σ2
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PAC-Bayes bounds

Seeger’s bound

Theorem (Seeger’s bound)

With probability at least 1− δ,

for any posterior Q, kl
(
RS(Q),R(Q)

)
⩽

KL(Q,P) + log(2
√

n/δ)
n

.

Proof: Chernov bound + binomal deviations.

Consequence: by Pinsker for the Bernoulli divergence, w.p. at least 1− δ:

R(Q)− RS(Q) ⩽

√
KL(Q,P) + log(2

√
n/δ)

2n

also called McAllester’s bound.
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PAC-Bayes bounds

From bounds to algorithms

Given a prior and a bound, we may look for the posterior that minimizes
the bound,

Q̂ ∈ argminQ

{
RS(Q) +

√
KL(Q,P) + log(2

√
n/δ)

2n

}

Even though this can be hard to minimize exactly, you know that the true
error bound of any stochastic hypothesis Q̂ is less than the bound.

In rest of this class, we will describe how to obtain non-vacuous bounds
for neural networks, thanks to a combination of tricks.

See Pierre Alquier’s notes + the original paper by Dziugaite and Roy.
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Non-vacuous bounds for deep nets

Non vacuous bounds for deep nets

Identify networks with their weights and biases. I.e., fix an architecture,
and parameterize the corresponding hypothesis space, by its weights and
biases w ∈ Rd .

Look for a stochastic neural network or posterior Q, in other words, a
probability distribution over the space of weights and biases, Rd

Remark: none of this is specific to neural networks.
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Non-vacuous bounds for deep nets

Plan for non-vacuous bounds

Here is the list of technical ingredients we will apply to obtain a
non-vacuous bound

Tight evaluation of the Bernoulli KL
Convex surrogate loss
Initialize posterior from a trained network
Nice parameterization of the posteriors
Data-dependent priors
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Non-vacuous bounds for deep nets

Ingredient 1: Inverting the Bernoulli KL

Instead of using Pinsker’s inequality to lower bound the kl, compute
exactly the bound

kl−1(q,B) = sup
{

p ∈ [0, 1] | kl(q, p) ⩽ B
}

(kl is convex in each argument, so non-decreasing in p for p ⩾ q)
to rewrite Seeger’s bound as

R(Q) ⩽ kl−1
(

RS(Q),
KL(Q,P) + log(2

√
n/δ)

n

)
.

kl−1 can computed efficiently using Newton’s method, initialized at the
Pinsker upper bound.
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Non-vacuous bounds for deep nets

Ingredient 2: Surrogate losses for optimization

Replace the 0-1 loss by the logistic loss, a convex (in h) upper bound

1{h(x) ̸= y} ← 1
log 2

log
(
1 + e−yh(x))

to make optimization possible.
Then it suffices to upper bound the bound with the surrogate loss

R(Q) ⩽ kl−1
(

RS(Q),
KL(Q,P) + log(2

√
n/δ)

n

)
⩽ kl−1

(
R̃S(Q),

KL(Q,P) + log(2
√

n/δ)
n

)
.
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Non-vacuous bounds for deep nets

Ingredient 3: Data-dependent priors

In principle, priors should be chosen independently of the data.

However if we have K different priors, then by a union bound, we can
have bounds over all priors simultaneously, at the cost of replacing δ by
δ/K , i.e., for a logK additive term.

In fact, we can even have a prior over priors (!). Set µ(λi) to be a
probability distribution over a grid of values of λ. I.e. for all λi

simultaneously, for all posteriors Q

R(Q) ⩽ kl−1
(

R̃S(Q),
KL(Q,Pλi ) + log(2

√
n/δ) + log(1/µ(λi))

n

)
.

In particular, we can also optimize over λ. We use the grid:

λi = λmaxα
i and µ(λi) =

6
π2i2 =

6
π2

( logα

log(λi/λmax)

)2

The extra cost is a loglog term in a square root.
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Non-vacuous bounds for deep nets

Ingredient 4: Gaussian distributions

KL between Gaussians can be written in closed form:

1
2

(
Tr(Σ−1

p Σq)− d + (µp − µq)
⊤Σ−1

p (µp − µq) + ln

(
detΣp

detΣq

))

Thus let us restrict our attention to Gaussian priors and posteriors.

Pλ = N (w0, λ
2I)

We also restrict our choice of posterior to Gaussian posteriors with
diagonal covariance, for w ∈ Rd and s ∈ Rd

Qw,s = N (w ,Diag(s2
i ))

Then

KL(Qw,s,Pλ) =
∥s∥2

2λ2 −
d
2
+
∥w − w0∥2

2λ2 +
d∑

i=1

log
λ

si
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Non-vacuous bounds for deep nets

Now apply Pinsker

We now apply Pinsker to this tighter inequality

kl−1
(

R̃S(Qw,s),
KL(Qw,s,Pλi ) + log(2

√
n/δ) + logµ(λi)

n

)

⩽ R̃S(Qw,s) +

√
KL(Qw,s,Pλi ) + log(2

√
n/δ) + log(1/µ(λi))

2n︸ ︷︷ ︸
to optimize over w, s, i

Final optimization trick: use unbiased estimates of the gradient of
R̃S(Qw,s) by sampling ξ ∼ N (0, Ip) and take gradients of R̃S(h(w + ξs)),
since

Eξ

[
∇w,sR̃S

(
h(w + ξs)

)]
= ∇w,sR̃S(Qw,s) .
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Non-vacuous bounds for deep nets

Summary up to now

Source: Dziugaite and Roy, 2017
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Non-vacuous bounds for deep nets

Computing the final bound

Once we have fixed values for the prior and posterior, the true bound is
still intractable because of RS(Qw,s).

Theorem (Bernoulli Concentration)
If X1, . . . ,Xm ∈ [0, 1] are i.i.d. with mean µ, then w.p. at least 1− δ′,

kl(X̄m, µ) ⩽
log 2/δ′

m

Proof: Donsker Varadhan variational formula for the kl + Chernov bound.

kl(q, p) = sup
λ

λq − log(peλ + (1− p)) sup
λ

λq − log(1 + p(eλ − 1))

Approximate RS(Qw,s) by Monte-Carlo/Hoeffding, sample m hypotheses
∼ Qw,s and compute the error of these hypotheses, then w.p. ⩾ 1− δ′,

RS(Qw,s) ⩽ kl−1
(

RS(Q̂w,s),
log 2/δ′

m

)
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Non-vacuous bounds for deep nets

Final bound

Final bound
Use the PAC-Bayes SGD to find (w , s, λi) that minimize the surrogate
bound. Then w.p. ⩾ 1− δ − δ′,

R(Qw,s) ⩽ kl−1
(

RS(Qw,s),
KL(Qw,s,Pλi ) + log(2

√
n/δ) + log(1/µ(λi))

n

)
and if Q̂w,s is the empirical distribution from m samples from Qw,s ,

RS(Qw,s) ⩽ kl−1
(

RS(Q̂w,s),
log(2/δ′)

m

)

(kl−1 is non-decreasing in its first argument, so we can plug the second
bound into the first one.)
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Local conclusion

If this approach works, it provides a stochastic network, i.e., a distribution
over weights for a given architecture, with a guaranteed generalization
bound, that is computable from the data.

It guarantees that, given this posterior distribution Q, if one samples a
network from Q, then w.p. 1− δ, the expected loss they will incur is at
most B(w , s, λ, δ).

Makings these bounds tighter and applying them to non-stochastic
classifiers is an active research direction.
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Results

Source: Dziugaite and Roy, 2017
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Insights from these results?

Why does this method good given tight(ish) generalization bounds?

One sugggested explanation is that SGD brings the network to wide
minima of the loss.

Broadly speaking, this method will work when we can compute a
posterior such that both RS(Q) and KL(Q,P) are small at the same
time.
SGD brings the weight to a wide minimum, around which we take a
wide posterior without degrading performance, leaving room to fit
the prior.
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Conclusion and Next time

Today
Introduced the PAC-Bayes framework for generalization
Introduced a PAC-Bayes generalization bound
Described a procedure to obtain stochastic neural networks with
tight bounds

In lab: implement this on binary FashionMNIST
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