
DL Theory – UPS-CS

Theoretical Principles of Deep Learning
Class 5: Neural Tangent Kernel

Hédi Hadiji

Université Paris-Saclay - CentraleSupelec
hedi.hadiji@l2s.centralesupelec.fr

January 2025

1 / 27

DL Theory – UPS-CS

Reminder of Last Time and Plan for the Day

Table of Contents

1 Reminder of Last Time and Plan for the Day

2 Generalization in the lazy regime

3 The Neural Tangent Kernel

4 Generalization

5 Summing Up

2 / 27

DL Theory – UPS-CS

Reminder of Last Time and Plan for the Day

Plan

Last time
Generalization bounds
Rademacher complexity

Today: Study the linearized model

Reading Material:
Telgarsky’s notes

3 / 27

DL Theory – UPS-CS

Reminder of Last Time and Plan for the Day

Rethinking generalization

Classical theory of generalization is:
more complex models have larger complexity
interpolating the data is bad for generalization

4 / 27

DL Theory – UPS-CS

Reminder of Last Time and Plan for the Day

Some empirical observations

On real data, deep neural networks can
interpolate and generalize
interpolate random labels easily

But it’s impossible to generalize from random labels!

[Zhang et al. ’17] Understanding deep learning requires rethinking generalization

5 / 27

DL Theory – UPS-CS

Reminder of Last Time and Plan for the Day

Consequences of these observations

Not clear what overfitting means in deep learning
Explicit regularization methods are not necessary (although they
often improve performance)
Simply measuring the complexity of the class of neural networks will
not explain the success of deep learning.

Successful bounds will need to incorporate the labels or the
optimization algorithm.

e.g. the Rademacher complexity of the class of deep neural nets
reachable by GD on typical image sets is likely large.

6 / 27

DL Theory – UPS-CS

Generalization in the lazy regime

Table of Contents

1 Reminder of Last Time and Plan for the Day

2 Generalization in the lazy regime

3 The Neural Tangent Kernel

4 Generalization

5 Summing Up

7 / 27

DL Theory – UPS-CS

Generalization in the lazy regime

Generalization in the Lazy Regime

Overfitting and generalization are difficult to analyze for arbitrary neural
nets. However, sometimes the training of neural nets is close to that of a
linear models: in the Lazy Regime.

In class 3, we discussed a regime in which the function represented by
the neural net stays close to its linear approximation during training:

h(w) ≈ h̄(w) := h(w0) + ⟨∇h(w0),w − w0⟩

In particular, very wide nets stay in the lazy regime.

8 / 27

DL Theory – UPS-CS

Generalization in the lazy regime

Program for today

Today: assume we are in the lazy regime, and study the generalization
properties of the approximating linear model.

Focus on the overparameterized regime, where the number of trainable
parameters p is larger than number of data points n.

Notation: h(w) = h(w , ·)

9 / 27

DL Theory – UPS-CS

Generalization in the lazy regime

Reminder: overparameterized least-squares and the kernel trick

Consider an arbitrary feature map: ϕ : R → Rp , and the hypotheses

h(w) = h(w0) + ⟨w − w0, ϕ(x)⟩

Least-squares training objective

arg min
w∈Rp

1
2n

∥∥h(w0,X) +Φ⊤(w − w0)− Y
∥∥2

Φ =



...
...

...
...

ϕ(x1) . . . ϕ(xn)
...

...
...

...


∈ Rp×n and Y =

y1
...

yn

 and h(w0,X) =

h(w0, x1)
...

h(w0, xn)



10 / 27

DL Theory – UPS-CS

Generalization in the lazy regime

GD and least-squares regression

Theorem (Limit of GD)
If Rank(Φ) = n, then the GD updates converge to

w∞ − w0 = Φ
(
Φ⊤Φ

)−1
(Y − h(w0,X)) =

n∑
i=1

ϕ(xi)(H−1(Y − h(w0,X))i ,

where H is the Gram matrix of the samples

H = Φ⊤Φ =
(
⟨ϕ(xi), ϕ(xj)⟩

)
i,j∈[n] .

Proof. Board.

11 / 27

DL Theory – UPS-CS

Generalization in the lazy regime

Consequences:
Interpolation: For all i ∈ [n]

h(w∞, xi) = h(w0, xi) +
n∑

j=1

⟨ϕ(xi), ϕ(xj)⟩(H−1(Y − h(w0,X))j = yi

(remember Hi,j = ⟨ϕ(xi), ϕ(xj)⟩.)
More generally: for any x ∈ X

h(w∞, x) = h(w0, x) +
n∑

i=1

〈
ϕ(x), ϕ(xi)

〉
(H−1(Y − h(w0,X)))i

Crucial observation: the feature map only appears in expressions as
⟨ϕ(x), ϕ(x ′)⟩. Therefore, we can compute the function learned without
computing explicitly the feature map, even if p = ∞.

Writing an algorithm in this form is called the ‘kernel trick’

12 / 27

DL Theory – UPS-CS

Generalization in the lazy regime

Kernelized least-squares

Given an abstract feature map ϕ : x → Rp , the associated kernel:

k : (x , x ′) 7→ ⟨ϕ(x), ϕ(x ′)⟩

If we can compute k(x , x ′), then we can compute the iterations of
gradient descent without ever computing Φ explicitly.
In the case of linear least-squares, if

H =
(
k(xi , xj)

)
i,j

is invertible, then the output of SGD can be written using the kernel trick
for any x ∈ X as

h(w∞, x) =
n∑

i=1

k(x , xi)(H−1Y)i

13 / 27

DL Theory – UPS-CS

The Neural Tangent Kernel

Table of Contents

1 Reminder of Last Time and Plan for the Day

2 Generalization in the lazy regime

3 The Neural Tangent Kernel

4 Generalization

5 Summing Up

14 / 27

DL Theory – UPS-CS

The Neural Tangent Kernel

NTK

The NTK is the kernel function from the linear approximation of a neural
network around its initialization.

Nice because:
can be computed explicitly in the ∞-width limit
purely convex method
amenable to analysis

15 / 27

DL Theory – UPS-CS

The Neural Tangent Kernel

An explicit example

Example: Consider a one-dimensional example of a network without
biases

h(w0, x) =
m∑

i=1

aiσ(bix)

ai , bi are initialized as random variables with variance proportional to
number of inputs, i.e.,

Var(ai) =
va

n
and Var(bi) = vb.

Or, equivalently, consider the parametrization

h(w0, x) =
1√
m

m∑
i=1

aiσ(bix) with Var(ai) = 1 and Var(bi) = 1.

What is the corresponding kernel?
Remember the feature map is ϕ : x → ∇w h(w0, x).

16 / 27

DL Theory – UPS-CS

The Neural Tangent Kernel

One dimensional input, two-layer net

Let us see the corresponding kernel. Differentiate with respect to the
weights

∇w h(w0, x) =
1√
m



...
σ(bix)

...
aix σ′(bix)

...


Then the kernel value is

⟨∇w h(w0, x),∇w h(w0, x ′)⟩ = 1
m

m∑
i=1

σ(bix)σ(bix ′)+
1
m

m∑
i=1

a2
i xx ′σ′(bix)σ′(bix ′)

What happens as m → ∞?

17 / 27

DL Theory – UPS-CS

The Neural Tangent Kernel

Two-layer neural net

In the infinite width limit (m → ∞),
The criterion for the lazy regime is applicable to the two-layer neural
network.
The Neural Tangent Kernel converges pointwise almost surely to

k(x , x ′) = E[σ(Bx)σ(Bx ′)] + E[A2xx ′σ′(Bx)σ′(Bx ′)]

18 / 27

DL Theory – UPS-CS

The Neural Tangent Kernel

NTK for a two-layer network

More generally if the inputs x is multidimensional and all the weights are
initialized to N (0, 1), then

k(x , x ′) = ⟨x , x ′⟩EB∼N (0,Id)[σ
′(⟨B, x⟩)σ′(⟨B, x ′⟩)]+EB∼N (0,Id)[σ(⟨B, x⟩)σ(⟨B, x ′⟩)] .

This can sometimes be computed explicitly e.g.

One hidden layer ReLU NTK

For ReLU activations with Gaussian initialization,

k(x , x ′) = ∥x∥∥x ′∥κ
(

⟨x , x ′⟩
∥x∥∥x ′∥

)
where

κ(ξ) =
2ξ
π

(
π − arccos(ξ)

)
+

√
1 − ξ2

π
.

19 / 27

DL Theory – UPS-CS

Generalization

Table of Contents

1 Reminder of Last Time and Plan for the Day

2 Generalization in the lazy regime

3 The Neural Tangent Kernel

4 Generalization

5 Summing Up

20 / 27

DL Theory – UPS-CS

Generalization

Generalization analysis

Theorem (Rademacher complexity of linear regression)

IfH = {x 7→ ⟨ϕ(x),w − w0⟩ | |∥w − w0∥ ⩽ W} then

RS(H) = E
[
sup
h∈H

n∑
i=1

σih(w , xi)

]
⩽

W max ∥ϕ(xi)∥√
n

.

In our case, we know that

∥w∞ − w0∥ = ∥ΦH−1Y∥ =
√

Y⊤H−1Y

so we should be able to restrict the Rademacher complexity to models
with distance

√
Y⊤H−1Y from initialization, to obtain generalization

bounds of the form: with prob ⩾ 1 − δ

R0-1(h(w∞)
)
⩽ c

√
Y⊤H−1Y

n
+

√
log(1/δ)

n

where R0-1(h(w∞)
)

is the probability of error of h(w∞).
21 / 27

DL Theory – UPS-CS

Generalization

Careful the previous reasoning is not valid because the bound on W
depends on the data!! However it is possible to turn it into a sound
argument.

Theorem (Generalization for overparameterized kernel regression)

If λmin(H) > λ with probability at least 1 − δ, then with probability at least
1 − δ, the output of GD converges to a hypothesis such that

R0-1(h(w∞)
)
⩽ c

√
Y⊤H−1Y

n
+ c′

√
log(n/(λδ))

n

simplified from Thm. 5.1 in ’Fine-Grained Analysis of Optimization and Generalization for Overparameterized
Two-Layer Neural Networks’ Arora et al. 2019

Gives a criterion to understand learnability by an NTK. It suffices that
H be invertible (with some uniformity on its eigenvalues)
Y⊤H−1Y grows slower than n

22 / 27

DL Theory – UPS-CS

Generalization

Prook sketch: Adaptive bound

Under the event that λmin > λ, we have

Y⊤H−1Y ⩽
n
λ

Then discretize for W in [0,Y⊤H−1Y] and union bound over the sets.

23 / 27

DL Theory – UPS-CS

Missing points and limits of this analysis

Extending this analysis

To conclude analysis
Must check that the network function stays close its linear
approximation for finite width.

To analyze more practical nets:
Exact formulae for the infinite width NTK can be derived for large
families of networks: arbitrary depth (limit might depend on the way
you make the width go to infinity), convolutions, residual networks,
etc.
Most of this can be extended to other losses: the NTK does not the
depend on the loss, but the limit point of (S)GD does, so careful
analysis is necessary.

24 / 27

DL Theory – UPS-CS

Missing points and limits of this analysis

Some limits of the NTK

From a theory point of view
NTK analysis essentially freezes the features at initialization
This removes a fundamental property of neural networks in the wild.

From afar one might wonder why we do not use NTKs instead of training
neural nets. The computational complexity of computing the GD iterates
grows (at least) quadratically with the number of points.

25 / 27

DL Theory – UPS-CS

Summing Up

Table of Contents

1 Reminder of Last Time and Plan for the Day

2 Generalization in the lazy regime

3 The Neural Tangent Kernel

4 Generalization

5 Summing Up

26 / 27

DL Theory – UPS-CS

Summing Up

Conclusion and Next time

Today
Defined the Neural Tangent Kernel associated to a neural network
Discussed the optimization and generalization

In lab: will implement an NTK

Next time discuss other theories of generalization

27 / 27

	Reminder of Last Time and Plan for the Day
	Generalization in the lazy regime
	The Neural Tangent Kernel
	Generalization
	Missing points and limits of this analysis
	Summing Up

