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Reminder of Last Time and Plan for the Day

Plan

Last time: Optimization
Some neural nets are easy to optimize in the lazy regime
E.g. very wide nets, or nets with scaled outputs.

Today: Generalization theory. Why/when should good training
performance imply good test performance.

Reading Material:
Telgarsky notes
Understanding Machine Learning, theory and algorithms
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Generalization

Setting: Supervised learning

Sample S = (xi , yi)i∈[n], i.i.d. from unknown distribution D on X × Y .

Objective of Supervised Learning

Given a sample S, find a hypothesis hS : X → Y such that the risk

R(hS) := E(X ,Y )∼D
[
ℓ(hS(X ),Y )

]
is small with high probability.

A standard method is to compute an (approximate) ERM.

ERM
Fix a class of hypotheses H. Look for hS ∈ H with small empirical risk:

RS(hS) :=
1
n

n∑
i=1

ℓ(hS(Xi),Yi) .
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Generalization

Generalization gap

Today: we forget about optimization (how we compute ERM) and focus
on statistical learning (“Is ERM any good in terms of true risk?”)

Definition (Generalization gap)

For a hypothesis h ∈ H, the generalization gap is the difference between
the true risk and the empirical risk on the sample

R(h)− RS(h) .

a.k.a. difference between train loss and true loss.
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Generalization

Rest of this class

A generalization bound is an upper bound on the generalization gap of
the output of a training algorithm.

Goal of today

Build some general machinery to prove generalization bounds and
discuss them when applied to neural networks.

7 / 27



DL Theory – UPS-CS

Learning theory

Table of Contents

1 Reminder of Last Time and Plan for the Day

2 Generalization

3 Learning theory

4 Rademacher complexity

5 Limits of uniform convergence?

6 Summing Up

8 / 27



DL Theory – UPS-CS

Learning theory

Generalization for a single hypothesis

Fix a single hypothesis h,

R(h)− RS(h) = E
[
ℓ(h(X ),Y )

]
− 1

n

n∑
i=1

ℓ(h(Xi),Yi)

For large S, by the central limit theorem, the generalization gap of a single
hypothesis is approximately Gaussian with mean 0 and variance C/n.
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Learning theory

Generalization for a single hypothesis II

Theorem (Hoeffding’s inequality)

If Xi are i.i.d. r.v. bounded in [0, 1], then with probability at least 1 − δ,

E[X ]− X̄n ⩽

√
log(1/δ)

2n
.

Assume the loss is bounded in [0, 1] then with probability at least 1 − δ:

R(h) ⩽ RS(h) +

√
log(1/δ)

2n
.

What if h is the ERM hypothesis on the sample S?

10 / 27



DL Theory – UPS-CS

Learning theory

Uniform convergence

One way to prove bounds for the ERM is uniform convergence. If

sup
h∈H

(
R(h)− RS(h)

)
⩽ B

then for any hypothesis h⋆ ∈ H

R(hERM) ⩽ RS(hERM) + B ⩽ RS(h
⋆) + B = R(h⋆) + B + (RS(h

⋆)− R(h⋆))

h⋆ is a single hypothesis, so the final term can be bounded with Hoeffding.

If B is small enough, with enough data points, the ERM can learn as well
as the best hypothesis in H.
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Learning theory

Generalization in Finite Classes

Theorem (Finite classes)
Fix a sample distribution D and loss bounded in [0, 1]. For any sample
distribution, with probability at least 1 − δ,

sup
h∈H

(
R(h)− RS(h)

)
⩽

√
log(|H|/δ)

2n

(From now on, “For any sample distribution” implicitly assumed.)

Proof: Board.
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Learning theory

Some observations from finite classes

1/
√

n is the standard dependence on the number of data points. Can also
get fast rates of order 1/n in nicer cases (e.g. low variance labels).

For finite classes, n ⩾ log |H| are sufficient for the ERM to start learning.

Bigger classes mean worse bounds: it takes more data points to start
having guarantees of learning. But this bound ignores the possible
structure of H.

What about infinite classes?
For binary classification and 0-1 loss, VC dimension characterizes
the learnability.
Another approach is to discretize the hypothesis space and compute
covering numbers.
We will talk of a more general tool: Rademacher complexity.
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Rademacher complexity

Rademacher complexity

One of the central tools to derive generalization in modern theory is

Definition (Rademacher complexity)

Let (σi)i∈[n] be Rademacher rv (±1 with prob. 1/2). The conditional
Rademacher complexity on sample S with loss ℓ is

RS(ℓ,H) =
1
n
Eσ

[
sup
h∈H

n∑
i=1

σiℓ(h(Xi),Yi)

]
and the Rademacher complexity of H with loss ℓ is

R(ℓ,H) = E
[
RS(ℓ,H)

]
.
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Rademacher complexity

Elementary properties

For any sample S,
RS(ℓ,H) ⩾ 0

If H = {h}, then RS(ℓ,H) = 0

If loss is bounded in [0, 1], then RS(ℓ,H) ⩽ 1

If H1 ⊂ H2, then RS(ℓ,H1) ⩽ RS(ℓ,H2).
In binary classification, if ℓ is the 0-1 loss, then ... Rademacher complexity
measures the capacity of the hypothesis class to classify arbitrarily the
features.
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Rademacher complexity

Generalization bounds

Theorem (Rademacher Generalization Bounds)
With probability at least 1 − δ,

R(h)− RS(h) ⩽ 2R(ℓ,H) +

√
log 1/δ

2n

and with probability at least 1 − δ,

R(h)− RS(h) ⩽ 2RS(ℓ,H) +

√
2 log(2/δ)

n
.

Proof: Symmetrization + concentration of suprema of empirical
processes.

Now it suffices to upper bound the Rademacher complexity of H to
obtain generalization guarantees.
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Rademacher complexity

Tool: McDiarmid’s inequality

Theorem (McDiarmid’s inequality)

Let f be a real-valued function of n points such that for any z1, . . . , zn, for any
i ∈ [n] and z′

i , we have

|f (z1, . . . , zi , . . . , zn)− f (z1, . . . , z′
i , . . . , zn)| ⩽ ci

then with probability at least 1 − δ,

f (Z )− E[f (Z )] ⩽

√√√√1
2

n∑
i=1

c2
i log(1/δ) .
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Rademacher complexity

Rademacher calculus

Rademacher complexity is nice because of tools to upper bound it.
Let V be a set of vectors in Rn, the Rademacher complexity of V is

R(V ) =
1
n
Eσ

[
sup
v∈V

n∑
i=1

σivi

]

Three main tools for Rademacher manipulations
Massart’s lemma
Contraction lemma
Convex hull lemma
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Rademacher complexity

Rademacher toolbox

Proposition (Massart’s lemma)

If |V | ⩽ K , thenR(V ) ⩽ maxv∈V ∥v − v̄∥
√

2 lnK/n, where v̄ is the average v .

Proposition (Contraction lemma)

Let Φi : R → R be L-Lipschitz functions, and
Φ : (v1, . . . , vn) → (Φ1(v1), . . . ,Φn(vn)), thenR(Φ(V )) ⩽ LR(V )

Proposition (Convex hulls)

If V is compact thenR(Conv(V )) = R(V ) .
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Rademacher complexity

Application: Rederivation for finite classes

Board.
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Limits of uniform convergence?

Bias/complexity trade-off and overfitting

Typical generalization bounds look like: with probability .99,

R(ĥ) ⩽ inf
h∈H

R(h)︸ ︷︷ ︸
↘ with H

+ c

√
Comp(H)

n︸ ︷︷ ︸
↗ with H

Standard intuition: if H is not expressive enough, then unable to catch
the data. Underfitting.

If H is very expressive, then many ways to fit the data, but might not
choose the correct one. The ERM may start fitting noise. “ Overfitting ”.
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Limits of uniform convergence?

Bias-complexity tradeoff

Trade-off is sometimes real: e.g. least-squares linear regression

Train and test losses vs. dimension of space of regression functions

Not what happens in practice with deep nets. Often there is double
descent, i.e., performance gets better with more complex models.
Bounds that only depend on the number of parameters fail to account
for that.

24 / 27



DL Theory – UPS-CS

Limits of uniform convergence?

Other approaches

We discussed a type of generalization bound that builds on measuring
the model complexity

Regularization. Training favor ‘simple’ hypotheses: dropout, layer
normalization, data augmentation
Implicit regularization due to SGD. e.g., we saw last week that in the
lazy regime, SGD stays close to initialization.
Stability analysis: cf. the Perceptron. If an algorithm is not too
sensitive to individual data points it should generalize.

Beyond uniform convergence
PAC-Bayes bounds
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Summing Up

Conclusion and Next time

Today
Defined generalization
Introduced a powerful method to derive generalization bounds for
many learning settings: Rademacher complexity

In problem session: will apply these to obtain bounds for neural nets.

Next time: Neural Tangent Kernel
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