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Reminder of Last Time and Plan for the Day

Plan

Last time: Optimization
Some neural nets are easy to optimize in the lazy regime
E.g. very wide nets, or nets with scaled outputs.

Today: Generalization theory. Why/when should good training
performance imply good test performance.

Reading Material:
Telgarsky notes
Understanding Machine Learning, theory and algorithms
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Generalization

Setting: Supervised learning

Sample S = (xi , yi)i∈[n], i.i.d. from unknown distribution D on X × Y .

Objective of Supervised Learning

Given a sample S, find a hypothesis hS : X → Y such that the risk

R(hS) := E(X ,Y )∼D
[
ℓ(hS(X ),Y )

]
is small with high probability.

A standard method is to compute an (approximate) ERM.

ERM
Fix a class of hypotheses H. Look for hS ∈ H with small empirical risk:

RS(hS) :=
1
n

n∑
i=1

ℓ(hS(Xi),Yi) .
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Generalization

Generalization gap

Today: we forget about optimization (how we compute ERM) and focus
on statistical learning (“Is ERM any good in terms of true risk?”)

Definition (Generalization gap)

For a hypothesis h ∈ H, the generalization gap is the difference between
the true risk and the empirical risk on the sample

R(h)− RS(h) .

a.k.a. difference between train loss and true loss.
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Generalization

Rest of this class

A generalization bound is an upper bound on the generalization gap of
the output of a training algorithm.

Goal of today

Build some general machinery to prove generalization bounds and
discuss them when applied to neural networks.
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Learning theory

Generalization for a single hypothesis

Fix a single hypothesis h,

R(h)− RS(h) = E
[
ℓ(h(X ),Y )

]
− 1

n

n∑
i=1

ℓ(h(Xi),Yi)

and the (Xi ,Yi) are iid.

For large S, by the central limit theorem, the generalization gap of a single
hypothesis is approximately Gaussian with mean 0 and variance C/n.
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Learning theory

Generalization for a single hypothesis II

Theorem (Hoeffding’s inequality)

If Xi are i.i.d. r.v. bounded in [0, 1], then with probability at least 1 − δ,

E[X ]− X̄n ⩽

√
log(1/δ)

2n
.

Assume the loss is bounded in [0, 1] then with probability at least 1 − δ:

R(h) ⩽ RS(h) +

√
log(1/δ)

2n
.

What if h is the ERM hypothesis on the sample S?
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Learning theory

Uniform convergence

One way to prove bounds for the ERM is uniform convergence. If

sup
h∈H

(
R(h)− RS(h)

)
⩽ B

then for any hypothesis h⋆ ∈ H

R(hERM) ⩽ RS(hERM) + B ⩽ RS(h
⋆) + B = R(h⋆) + B + (RS(h

⋆)− R(h⋆))

h⋆ is a single hypothesis, so the final term can be bounded with Hoeffding.

If B is small enough, with enough data points, the ERM can learn as well
as the best hypothesis in H.
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Learning theory

Generalization in Finite Classes

Remember |H| denotes the cardinality of H.

Theorem (Finite classes)
Fix a sample distribution D and loss bounded in [0, 1]. For any sample
distribution, with probability at least 1 − δ,

sup
h∈H

(
R(h)− RS(h)

)
⩽

√
log(|H|/δ)

2n

(From now on, “For any sample distribution” implicitly assumed.)

Proof: Board.
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Learning theory

Some observations from finite classes

1/
√

n is the standard dependence on the number of data points. Can also
get fast rates of order 1/n in nicer cases (e.g. low variance labels).

For finite classes, n ⩾ log |H| are sufficient for the ERM to start learning.

Bigger classes mean worse bounds: it takes more data points to start
having guarantees of learning. But this bound ignores the possible
structure of H.

What about infinite classes?
For binary classification and 0-1 loss, VC dimension characterizes
the learnability.
Another approach is to discretize the hypothesis space and compute
covering numbers.
We will talk of a more general tool: Rademacher complexity.
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Rademacher complexity

Rademacher complexity

One of the central tools to derive generalization in modern theory is
Rademacher complexity.

Definition (Rademacher complexity)

Let (σi)i∈[n] be Rademacher rv (±1 with prob. 1/2). The conditional
Rademacher complexity on sample S with loss ℓ is

RS(ℓ,H) =
1
n
Eσ

[
sup
h∈H

n∑
i=1

σiℓ(h(Xi),Yi)

]
and the Rademacher complexity of H with loss ℓ is

R(ℓ,H) = E
[
RS(ℓ,H)

]
.
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Rademacher complexity

Elementary properties

For any sample S,
RS(ℓ,H) ⩾ 0

If H = {h}, then RS(ℓ,H) = 0

If loss is bounded in [0, 1], then RS(ℓ,H) ⩽ 1

If H1 ⊂ H2, then RS(ℓ,H1) ⩽ RS(ℓ,H2).
In binary classification, if ℓ is the 0-1 loss, then ... Rademacher complexity
measures the capacity of the hypothesis class to classify arbitrarily the
features.
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Rademacher complexity

Generalization bounds

Theorem (Rademacher Generalization Bounds)
With probability at least 1 − δ,

sup
h∈H

(
R(h)− RS(h)

)
⩽ 2R(ℓ,H) +

√
log 1/δ

2n

and with probability at least 1 − δ,

sup
h∈H

(
R(h)− RS(h)

)
⩽ 2RS(ℓ,H) + 2

√
2 log(2/δ)

n
.

Proof: Symmetrization + concentration of suprema of empirical
processes.

Now it suffices to upper bound the Rademacher complexity of H to
obtain generalization guarantees.
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Rademacher complexity

Tool: McDiarmid’s inequality

Theorem (McDiarmid’s inequality)

Let f be a real-valued function of n points such that for any z1, . . . , zn, for any
i ∈ [n] and z′

i , we have

|f (z1, . . . , zi , . . . , zn)− f (z1, . . . , z′
i , . . . , zn)| ⩽ ci

then with probability at least 1 − δ,

f (Z )− E[f (Z )] ⩽

√√√√1
2

n∑
i=1

c2
i log(1/δ) .

Generalization of Hoeffding from sum to other functions.
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Rademacher complexity

Rademacher calculus

Rademacher complexity is nice because of tools to upper bound it.
Let V be a set of vectors in Rn, the Rademacher complexity of V is

R(V ) =
1
n
Eσ

[
sup
v∈V

n∑
i=1

σivi

]

(Then RS(ℓ,H) = R({ℓ(h(Xi),Yi , )|i ∈ [n]}))

Three main tools for Rademacher manipulations
Massart’s lemma
Contraction lemma
Convex hull lemma
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Rademacher complexity

Rademacher toolbox

Proposition (Massart’s lemma)

If |V | ⩽ K , thenR(V ) ⩽ maxv∈V ∥v − v̄∥
√

2 lnK/n, where v̄ is the average v .

Proposition (Contraction lemma)

Let Φi : R → R be L-Lipschitz functions, and
Φ : (v1, . . . , vn) → (Φ1(v1), . . . ,Φn(vn)), thenR(Φ(V )) ⩽ LR(V )

Proposition (Convex hulls)

If V is compact thenR(Conv(V )) = R(V ) .
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Rademacher complexity

Application: Rederivation for finite classes

Board.
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Limits of uniform convergence?

Bias/complexity trade-off and overfitting

Typical generalization bounds look like: with probability .99,

R(ĥ) ⩽ inf
h∈H

R(h)︸ ︷︷ ︸
↘ with H

+ c

√
Comp(H)

n︸ ︷︷ ︸
↗ with H

Standard intuition: if H is not expressive enough, then unable to catch
the data. Underfitting.

If H is very expressive, then many ways to fit the data, but might not
choose the correct one. The ERM may start fitting noise. “ Overfitting ”.
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Limits of uniform convergence?

Bias-complexity tradeoff

Trade-off is sometimes real: e.g. least-squares linear regression

Train and test losses vs. dimension of space of regression functions

In Deep learning practice: larger the nets yield better generalization!
Bounds that only depend on the number of parameters fail to explain
this.
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Limits of uniform convergence?

Other approaches

We discussed a type of generalization bound that builds on measuring
the model complexity. Other factors can influence the generalization:

Regularization. Training tricks favor ‘simple’ hypotheses: dropout,
layer normalization, data augmentation
Implicit regularization due to SGD. e.g., we saw last week that in the
lazy regime, SGD stays close to initialization.
Stability analysis: cf. the Perceptron. If an algorithm is not too
sensitive to individual data points it should generalize.

Beyond uniform convergence
PAC-Bayes bounds
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Summing Up

Conclusion and Next time

Today
Defined generalization
Introduced a powerful method to derive generalization bounds for
many learning settings: Rademacher complexity

In problem session: will apply these to obtain bounds for neural nets.

Next time: Neural Tangent Kernel
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