
DL Theory – UPS-CS

Theoretical Principles of Deep Learning
Class III: Lazy training

Hédi Hadiji

Université Paris-Saclay - CentraleSupelec
hedi.hadiji@l2s.centralesupelec.fr

December 18th, 2023

1 / 35

DL Theory – UPS-CS

Reminder of Last Time and Plan for the Day

Table of Contents

1 Reminder of Last Time and Plan for the Day

2 Empirical Risk Minimization II

3 Convex Optimisation

4 Linear models

5 Neural networks and Lazy Training

6 Lazy training

2 / 35

DL Theory – UPS-CS

Reminder of Last Time and Plan for the Day

Plan

Last time: Approximation
2-layer nets with enough nodes are universal approximators
Smooth functions (in the sense of Barron) can be well approximated
by small(-ish) nets, even for high-dim inputs

Today: Optimization. Understanding the behavior of neural nets under
gradient descent.

Reading Material:
On Lazy Training in Differentiable Programming, Chizat, Oyallon and
Bach ’19

3 / 35

DL Theory – UPS-CS

Empirical Risk Minimization II

Table of Contents

1 Reminder of Last Time and Plan for the Day

2 Empirical Risk Minimization II

3 Convex Optimisation

4 Linear models

5 Neural networks and Lazy Training

6 Lazy training

4 / 35

DL Theory – UPS-CS

Empirical Risk Minimization II

ERM and SGD

Fix a set of hypotheses, parameterized by some w ∈ Rp.

Given a dataset, find a model that minimizes the empirical loss

arg min
w∈Rp

F (w) :=
1
n

n∑
i=1

ℓ(h(xi ;w), yi) ,

using (Stochastic) Gradient Descent.

This works well in practice for neural nets. Why?

5 / 35

DL Theory – UPS-CS

Empirical Risk Minimization II

Plan for the day

Bringing partial answer to why (S)GD works with neural nets
Describe a typical cases we understand: linear models
Identify the Lazy Regime (i.e. sets of dimensions, or parameters) in
which neural nets can be seen as almost linear models

6 / 35

DL Theory – UPS-CS

Convex Optimisation

Table of Contents

1 Reminder of Last Time and Plan for the Day

2 Empirical Risk Minimization II

3 Convex Optimisation

4 Linear models

5 Neural networks and Lazy Training

6 Lazy training

7 / 35

DL Theory – UPS-CS

Convex Optimisation

Linear models

Linear models
Fix a feature map ϕ : X → Rp for some p ∈ N, and consider the
corresponding set of linear models

H =
{

h(· ;w) : x 7→ w⊤ϕ(x)
}
.

Important Models are linear in w , not in x . In fact, this makes sense even
if x is not an element of a vector space.

8 / 35

DL Theory – UPS-CS

Convex Optimisation

Convex losses

If the model is linear and the loss is convex then the ERM objective is a
convex function of w ,

F (w) =
1
n

n∑
i=1

ℓ
(
w⊤ϕ(xi), yi

)

Convex functions are easy to optimize
9 / 35

DL Theory – UPS-CS

Convex Optimisation

Gradient descent for convex optimization

Let F : Rp → R be a convex differentiable function. Gradients point in the
direction where the function is locally growing the fastest. To minimize,
move in opposite direction.

∇F (w) =
(∂F
∂wi

(w)
)

Gradient descent
Fix a learning rate (or step-size) η > 0, an initialization point w0. Gradient
descent generates the sequence of points defined by

wt+1 = wt − η∇F (wt) .

10 / 35

DL Theory – UPS-CS

Convex Optimisation

Stochastic Gradient Descent

Sometimes, only have access to noisy estimates of the gradient

wt+1 = wt − η gt where gt is such that E[gt] = ∇F (wt) .

Example (SGD, sampling with replacement for ERM)

F (w) =
1
n

n∑
i=1

ℓi(w)

Pick It at random in {1, . . . , n} and gt = ∇ℓIt (wt), then

E[gt] =
n∑

i=1

∇ℓi(wt)P[It = i] =
1
n

n∑
i=1

∇ℓi(wt) = ∇
(

1
n

n∑
i=1

ℓi

)
(wt) = ∇F (wt)

Remark: SGD can also be interpreted as directly minimizing the true
average loss E[ℓ(h(X ,w),Y)]

11 / 35

DL Theory – UPS-CS

Convex Optimisation

GD: Typical behavior for convex and smooth objectives

If F is smooth and the learning rate small enough, GD will converge to a
critical point ∇F (w⋆) = 0. If function is convex, critical points are global
optima.

Regardless of initialization:
reasonable η function value will decrease to the minimum
too small η small steps, not moving much, slow convergence
too large η big steps, instability, divergence or oscillations

Could do a (multiple) whole course on convex optimization but let us just
look at important examples.

12 / 35

DL Theory – UPS-CS

Convex Optimisation

GD examples. Curvature and smoothness.

f (w) =
1
2
(w − w⋆)2

wt+1 = wt − η(wt − w⋆) so wt+1 − w⋆ = (1 − η)(wt − w⋆)

Exponential convergence iff 0 < η < 2
Exponential divergence if η > 2

13 / 35

DL Theory – UPS-CS

Convex Optimisation

GD examples: Flat and not smooth

Absolute value: flat and not smooth at the optimum
f (w) = G|w − w⋆|

14 / 35

DL Theory – UPS-CS

Convex Optimisation

GD examples: Flat and not smooth II

wt =

{
wt − ηG if wt > w⋆

wt + ηG if wt < w⋆

Move to a small neighborhood of w⋆, then oscillate around w⋆.

To find w such that f (w)− f (w⋆) ⩽ ε, pick η = G/ε and wait for
T = |w0 − w⋆|G/ε steps.

Exercise: think about Huber loss and local vs. global effects of curvature
and smoothness

F (w) =

|w |2

2
if |w | ⩽ 1

|w | − 1
2

if |w | > 1

15 / 35

DL Theory – UPS-CS

Convex Optimisation

GD: Fundamental examples

Quadratic:

f (w) =
1
2
(w − w⋆)⊤M(w − w⋆), M positive definite

Source: Francesco Orabona’s blog

Speed of convergence is determined by the conditioning of the quadratic,
i.e. how ’flat’ the level sets are.

16 / 35

https://parameterfree.com/2018/06/29/the-negative-gradient-does-not-point-towards-the-minimum/

DL Theory – UPS-CS

Convex Optimisation

Gradient descent

Exercise: Considering both ∥w − w⋆∥ and F (w)− F (w⋆). Describe the
behavior of the iterates of gradient descent on the functions
a)

f (x , y) =
x2

2
b)

g(x , y) =
x2

2
+ 0.00001

y2

2
c)

h(x , y) =
x2

2
+ |y | .

17 / 35

DL Theory – UPS-CS

Linear models

Table of Contents

1 Reminder of Last Time and Plan for the Day

2 Empirical Risk Minimization II

3 Convex Optimisation

4 Linear models

5 Neural networks and Lazy Training

6 Lazy training

18 / 35

DL Theory – UPS-CS

Linear models

A closer look at least-squares regression

Least-squares regression

Y = R and ϕ(x) ∈ Rp. Minimize the empirical square loss

arg min
w∈Rp

1
2n

n∑
i=1

(
w⊤ϕ(xi)− yi

)2

Useful notation

X =

ϕ(x1) . . . ϕ(xn)

 ∈ Rp×n and Y =

y1
...

yn

 ∈ Rn

Least-squares can be written as (with euclidean norm in Rn)

arg min
w∈Rp

1
2n

∥∥X⊤w − Y
∥∥2

19 / 35

DL Theory – UPS-CS

Linear models

Overparameterization in linear regression

arg min
w∈Rp

1
2n

∥∥X⊤w − Y
∥∥2

Consider the system of equations in w ∈ Rp

X⊤w = Y , X⊤ ∈ Rn×p

Underparameterization. If Rank(X⊤) < n, then system can have no
solutions (generically for Y). Loss has unique minimizer, reached at the
projection of Y on the linear span of the feature vectors.

Overparameterization. If Rank(X⊤) = n, then then system can have
infinitely many solutions, and the minimal loss value is 0. The feature
vectors have the capacity to fit perfectly the data in many ways.

20 / 35

DL Theory – UPS-CS

Linear models

GD in overparameterized least-squares

GD (with learning rate n η)

wt+1 = wt − ηX(X⊤wt − Y) = (Ip − ηXX⊤)wt + ηXY .

In overparameterized regime, denoting by λi the eigenvalues of XX⊤

Ip − ηXX⊤ ∼

1 − ηλ1

. . . 0
1 − ηλn

1

0
. . .

1

GD converges exponentially fast to a minimizer of F , and the speed
of convergence depends on eigenvalues of the feature matrix XX⊤.
(wt) only moves in an n-dimensional: the image of X

(Essentially the same case as f (x , y) = x2/2)
21 / 35

DL Theory – UPS-CS

Neural networks and Lazy Training

Table of Contents

1 Reminder of Last Time and Plan for the Day

2 Empirical Risk Minimization II

3 Convex Optimisation

4 Linear models

5 Neural networks and Lazy Training

6 Lazy training

22 / 35

DL Theory – UPS-CS

Neural networks and Lazy Training

Recall: Back to neural networks

Feedforward neural networks
For dimensions p, q, r , a layer is a function Rp → Rr

Φσ,A,b : x 7→ σ
(
Ax + b

)
where σ : Rq → Rr is a simple non-linear function, A is a q × p matrix and
b ∈ Rq is a vector.

A neural network is a function of the form

h : x 7→ ΦσL,AL,bL ◦ · · · ◦ Φσ0,A0,b0(x) .

The trainable parameters are

w = (A0, b0, . . . ,AL, bL) .

The (Ai) are the weights and the (bi) the biases, but we often forget the
biases and call w the weights.

23 / 35

DL Theory – UPS-CS

Neural networks and Lazy Training

Non-convexity

Even one hidden layer with square loss

1
2
(
h(x ,w)− y

)2
=

1
2

(m∑
k=1

ck σ(a⊤
k x + bk)− y

)2

Dependence on (ck , ak , bk) looks complicated (and this is only one layer).

non-convex + high-dimension = trouble
24 / 35

DL Theory – UPS-CS

Neural networks and Lazy Training

Some empirical observations about neural nets

Neural net that are
very large
randomly initialized with an appropriate scaling (Le Cun initialization)

are such that
training loss decreases very fast
weights move very slowly
the outputs of the net move in a similar fashion during training

This is called the lazy regime because the network learns by making
small moves.

25 / 35

DL Theory – UPS-CS

Lazy training

Table of Contents

1 Reminder of Last Time and Plan for the Day

2 Empirical Risk Minimization II

3 Convex Optimisation

4 Linear models

5 Neural networks and Lazy Training

6 Lazy training

26 / 35

DL Theory – UPS-CS

Lazy training

Linearization

Lazy training is a very general phenomenon, that already happened in
overparameterized linear models: the weights move to a close minimizer
and the loss decreased fast.

What about non-linear models? Consider linearization:
h(x ,w) = h(x ,w0) + Dh(x ,w0).(w − w0)︸ ︷︷ ︸

linear in w

+o(∥w − w0∥)

For convenience, omit the dependence on x .

Linearized model around w0

h(w) = h(w0) + Dh(w0).(w − w0)︸ ︷︷ ︸
:= h̄(w)

+o(∥w − w0∥)

(where the equality is between functions of x with an L2-norm).

In a neighborhood of the the initial weights, the network behaves like a
linear model with feature map Dh(w0)

27 / 35

DL Theory – UPS-CS

Lazy training

Lazy training: some heuristic computations

Lazy training

Lazy training occurs when the Taylor expansion of the model stays valid
through the whole training procedure.

Hand-wavy, but important for intuition.

|F (w1)− F (w0)|
F (w0)︸ ︷︷ ︸

scale of loss variations

≫ ∥D2h(w0)[w1 − w0,w1 − w0]∥
∥Dh(w0)[w1 − w0]∥︸ ︷︷ ︸

scale of variations of the linear approximations

i.e., using w1 − w0 = η∇F (w0) when

∥∇F (w0)∥
|F (w0)|

≫ ∥D2h(w0)∥
∥Dh(w0)∥

.

28 / 35

DL Theory – UPS-CS

Lazy training

Heuristic computations II: Square loss

Consider a square loss of the form

F (w) =
∥h(w)− h⋆∥2

2

(
:=

∫
(h(x ,w)− y(x))2

2
dx

)
then ∥∇F (w0)∥ = ∥Dh(w0)

⊤(h(w0)− y)∥ ≈ ∥Dh(w0)∥∥h(w0)− y∥,
so

∥∇F (w0)∥
|F (w0)|

≫ ∥D2h(w0)∥
∥Dh(w0)∥

iff ∥h(w0)− y∥∥D2h(w0)∥
∥Dh(w0)∥2 ≪ 1 .

Definition (Lazy regime criterion for the square loss)

κ(w0) := ∥h(w0)− y∥∥D2h(w0)∥
∥Dh(w0)∥2

Morally, if κ(w0) is small, then the model stays close to its linear
approximation during the whole training.

29 / 35

DL Theory – UPS-CS

Lazy training

Lazy training

Let us describe two cases of lazy training:
Scaling
Large width + random initialization

30 / 35

DL Theory – UPS-CS

Lazy training

Lazy training by scaling

Simple way to ensure lazy training: multiply the model outputs by a scale
factor α, while maintaining h(w0) = 0. Then

καh(w0)(w0) =
1
α
∥y∥∥D2h(w0)∥

∥Dh(w0)∥2 −−−−→
α→∞

0

Consider the linearized model around w0,

h̄(w) = h(w0) + Dh(w0).(w − w0)

Theorem (Chizat, Oyallon, Bach ’19)

For the square loss, if h(w0) = 0, the trajectories of gradient descent following
αh and αh̄ stay within O(1/α2) of each other.

31 / 35

DL Theory – UPS-CS

Lazy training

Lazy training in ∞-width two layer nets

Proposition (Lazy training in infinite-width)

Consider a one-layer hidden layer neural network with m hidden nodes with
Le Cun initialization, then

κ(W0) → 0 as m → ∞ .

Le Cun initialization: all weights are randomly initialized with variance of
inputs of every node that sum to 1.

h(x ,w0) =
m∑

j=1

ciσ(x⊤ai)

aj ∼ N (0, 1) cj ∼ N
(

0,
1
m

)
Equivalently:

h(x ,w0) = α(m)
m∑

j=1

ciσ(x⊤ai)

with aj , cj ∼ N (0, 1).
32 / 35

DL Theory – UPS-CS

Lazy training

Lazy training: so what?

Benefits of the lazy training regime
Neural nets are easy to train in the lazy training
Great for theory: we can also identify the point of convergence and
study the statistical properties of that point.

BUT limited for practice. Linearized nets behave worse than real life nets.

source the paper

33 / 35

https://arxiv.org/abs/1812.07956

DL Theory – UPS-CS

Lazy training

Conclusion and Next time

Today
Optimization in linear models
The Lazy regime

Next time: A closer look at the linearized model for infinite-width
networks Neural Tangent Kernel

34 / 35

DL Theory – UPS-CS

Lazy training

Conclusion and Next time

Thanks !!
Break

35 / 35

	Reminder of Last Time and Plan for the Day
	Empirical Risk Minimization II
	Convex Optimisation
	Linear models
	Neural networks and Lazy Training
	Lazy training

