DL Theory - UPS-CS

Theoretical Principles of Deep Learning
Class Ill: Lazy training

Hédi Hadiji

Université Paris-Saclay - CentraleSupelec
hedi.hadiji@|2s.centralesupelec.fr

December 18th, 2023

1/35

DL Theory - UPS-CS

Reminder of Last Time and Plan for the Day

Table of Contents

Reminder of Last Time and Plan for the Day

2/35

DL Theory - UPS-CS

Reminder of Last Time and Plan for the Day

Plan

Last time: Approximation
m 2-layer nets with enough nodes are universal approximators

m Smooth functions (in the sense of Barron) can be well approximated
by small(-ish) nets, even for high-dim inputs

Today: Optimization. Understanding the behavior of neural nets under
gradient descent.

Reading Material:
m On Lazy Training in Differentiable Programming, Chizat, Oyallon and
Bach'19

3/35

DL Theory - UPS-CS

Empirical Risk Minimization Il

Table of Contents

Empirical Risk Minimization I

4/35

DL Theory - UPS-CS

Empirical Risk Minimization Il

ERM and SGD

Fix a set of hypotheses, parameterized by some w € R”.

Given a dataset, find a model that minimizes the empirical loss

arg m|n F(w Zf (Xi; W), ¥i) »
using (Stochastic) Gradient Descent.

This works well in practice for neural nets. Why?

5/35

DL Theory - UPS-CS

Empirical Risk Minimization Il

Plan for the day

Bringing partial answer to why (S)GD works with neural nets
m Describe a typical cases we understand: linear models

m |dentify the Lazy Regime (i.e. sets of dimensions, or parameters) in
which neural nets can be seen as almost linear models

6/35

DL Theory - UPS-CS

Convex Optimisation

Table of Contents

Convex Optimisation

7/35

DL Theory - UPS-CS

Convex Optimisation

Linear models

Linear models

Fix a feature map ¢ : X — RP for some p € N, and consider the
corresponding set of linear models

H={h(-;w): x> w $x)}.

Important Models are linear in w, not in x. In fact, this makes sense even
if x is not an element of a vector space.

8/35

DL Theory - UPS-CS

Convex Optimisation

Convex losses

If the model is linear and the loss is convex then the ERM objective is a
convex function of w,

Fiw) = 1 > 0w o(0).)

Convex functions are easy to optimize

9/35

DL Theory - UPS-CS

Convex Optimisation

Gradient descent for convex optimization

Let F : R? — R be a convex differentiable function. Gradients point in the
direction where the function is locally growing the fastest. To minimize,
move in opposite direction.

oF
aW,'

VEW) = (45 (w))

Gradient descent

Fix a learning rate (or step-size) n > 0, an initialization point wp. Gradient
descent generates the sequence of points defined by

Wi = Wt — ?7VF(W1) °

10/35

DL Theory - UPS-CS

Stochastic Gradient Descent

Sometimes, only have access to noisy estimates of the gradient

Wit = W —ngr where g: issuchthat E[g:] = VF(w).

Example (SGD, sampling with replacement for ERM)

F(w) = %ZE,’(W)

Pick)t at randomin {1,...,n} and g: = V¢, (w), then

Elgi] = > Ve&(w)Plh = i] = % > Vi(w) =V (% Zz,) (W) = VF(w)
i=1 i=1

i=1

Remark: SGD can also be interpreted as directly minimizing the true
average loss E[¢(h(X, w), Y)]

11/35

DL Theory - UPS-CS

Convex Optimisation

GD: Typical behavior for convex and smooth objectives

If F is smooth and the learning rate small enough, GD will converge to a
critical point VF(w™*) = 0. If function is convex, critical points are global
optima.

Regardless of initialization:
m reasonable n function value will decrease to the minimum
m too small n small steps, not moving much, slow convergence
m too large n big steps, instability, divergence or oscillations

Could do a (multiple) whole course on convex optimization but let us just
look at important examples.

12/35

DL Theory - UPS-CS

GD examples. Curvature and smoothness.

f(w) = %(w— w*)?

(x=0.4)22

-4 -2 0 2 4

Wiyt = Wp — n(We — Wy) SO Wiyt — We = (1 —n)(wr — wy)

m Exponential convergence iff0 < n < 2
m Exponential divergence ifn > 2

13/35

DL Theory - UPS-CS

Convex Optimisation

GD examples: Flat and not smooth

Absolute value: flat and not smooth at the optimum
f(w) = Glw — w*|

2|x—0.4|

14/35

DL Theory - UPS-CS

Convex Optimisation

GD examples: Flat and not smooth II

w; —nG if w>w”
w: +nG if w<w*
Move to a small neighborhood of w*, then oscillate around w*.

To find w such that f(w) — f(w*) < ¢, pick n = G/e and wait for
T = |wo — w*|G/e steps.

Exercise: think about Huber loss and local vs. global effects of curvature
and smoothness

2
% if w] <1
F(w) = 1
\w|—é if |w|>1

15/35

DL Theory - UPS-CS

Convex Optimisation

GD: Fundamental examples

Quadratic:

f(w) =

(w—w*)"M(w —w*), M positive definite

N —

2

Figure 2. Gradient, level set, and behavior of GD.
Source: Francesco Orabona’s blog
Speed of convergence is determined by the conditioning of the quadratic,

i.e. how 'flat’ the level sets are.
16/35

https://parameterfree.com/2018/06/29/the-negative-gradient-does-not-point-towards-the-minimum/

DL Theory - UPS-CS

Convex Optimisation

Gradient descent

Exercise: Considering both ||w — w*|| and F(w) — F(w*). Describe the
behavior of the iterates of gradient descent on the functions

a)
2
X
f(X7 y) - E
b) 2 2
_x v
alx,y) = 5 + 0.00001 5
o)

2
X
hix.y) =% + Iy,

17/35

DL Theory - UPS-CS

Linear models

Table of Contents

Linear models

18/35

DL Theory - UPS-CS

Linear models

A closer look at least-squares regression

Least-squares regression

Y =R and ¢(x) € RP. Minimize the empirical square loss

n

arg m|n % Z(WT¢>(XI) = y;)2

Useful notation

n
X=|o(x1) ... o) |ecR™ and Y=|:|cR

Yn
Least-squares can be written as (with euclidean norm in R")
—[X"w—-Y
arg min - o I

19/35

DL Theory - UPS-CS

Linear models

Overparameterization in linear regression

o1
arg min, EHXTW — Y||2

Consider the system of equations in w € RP
X'w=Y, X' eRr™

Underparameterization. If Rank(X") < n, then system can have no
solutions (generically for Y). Loss has unique minimizer, reached at the
projection of Y on the linear span of the feature vectors.

Overparameterization. If Rank(X") = n, then then system can have
infinitely many solutions, and the minimal loss value is 0. The feature
vectors have the capacity to fit perfectly the data in many ways.

20/35

DL Theory - UPS-CS
GD in overparameterized least-squares
GD (with learning rate nn)
Wit = we — nX(XTws — Y) = (Jp — nXX 7)wt + nXY.
In overparameterized regime, denoting by \; the eigenvalues of XXT
1 — 0

I — XX ~ 1=

m GD converges exponentially fast to a minimizer of F, and the speed
of convergence depends on eigenvalues of the feature matrix XX .

m (w;) only moves in an n-dimensional: the image of X

(Essentially the same case as f(x, y) = x*/2)
21/35

DL Theory - UPS-CS

Neural networks and Lazy Training

Table of Contents

Neural networks and Lazy Training

22/35

DL Theory - UPS-CS

Neural networks and Lazy Training

Recall: Back to neural networks

Feedforward neural networks
For dimensions p, g, r, a layer is a function R° — R"

q)g’,q’b X = O’(AX aF b)

where o : R — R' is a simple non-linear function, Ais a g x p matrix and
b € RY is a vector.

A neural network is a function of the form

h:x— ¢°'L:ALabL ®ooo@ ¢Goon,bo(X)'

The trainable parameters are
w = (Ao, bo, ..., AL bL).

The (A)) are the weights and the (b;) the biases, but we often forget the
biases and call w the weights.

23/35

DL Theory - UPS-CS

Neural networks and Lazy Training

Non-convexity
Even one hidden layer with square loss

%(/"(X,W)—y)2 = ;(;cka(alwbk)—y)

Dependence on (¢, ax, bx) looks complicated (and this is only one layer).

non-convex + high-dimension = trouble

24/35

DL Theory - UPS-CS

Neural networks and Lazy Training

Some empirical observations about neural nets

Neural net that are

m very large

m randomly initialized with an appropriate scaling (Le Cun initialization)
are such that

m training loss decreases very fast

m weights move very slowly

m the outputs of the net move in a similar fashion during training

This is called the lazy regime because the network learns by making
small moves.

25/35

DL Theory - UPS-CS

Table of Contents

A Lazy training

26/35

DL Theory - UPS-CS

Linearization

Lazy training is a very general phenomenon, that already happened in
overparameterized linear models: the weights move to a close minimizer
and the loss decreased fast.
What about non-linear models? Consider linearization:

h(x, w) = h(x, wo) + Dh(x, wo).(w — wo) +o(||w — wo||)

linear in w

For convenience, omit the dependence on x.

Linearized model around wy

h(w) = h(wo) + Dh(wo).(w — wo) +o([[w — wol)

= E(W)

(where the equality is between functions of x with an Lo-norm).

In a neighborhood of the the initial weights, the network behaves like a

linear model with feature map Dh(wy)
27/35

DL Theory - UPS-CS

T

Lazy training: some heuristic computations

Lazy training

Lazy training occurs when the Taylor expansion of the model stays valid
through the whole training procedure.

Hand-wavy, but important for intuition.

|F(w1) — F(wo)| 1D*h(wo)[ws — wo, wi — w]|
>
F(wo) [|Dh(wo)[ws — wol|
scale of loss variations scale of variations of the linear approximations

i.e., using wi — wp = nVF(wo) when

IVE(wo)ll _ [[D*h(wo)|
[F(wo)| ~ [Dh(wo)]

28/35

DL Theory - UPS-CS

T
Heuristic computations Il: Square loss

Consider a square loss of the form
* |12 2
Fow) = 170 = [(/(hx w) - y()) dx)

then [VF(wo)|| = [[Dh(wo) " (h(wo) — y)|| ~ [|Dh(wo)l[1A(wo) — I,
SO
IVF(wo)ll [ID*h(wo)l|

1D h(wo) |
[F(wo)l ~ [Dh(wo)]

[IDh(wo)|?

iff ||h(wo) — y <1

Definition (Lazy regime criterion for the square loss)

102 h(wo)

w(wo) = [Ih(Wo) = ¥l 5preye

Morally, if x(wo) is small, then the model stays close to its linear
approximation during the whole training.

29/35

DL Theory - UPS-CS

Lazy training

Let us describe two cases of lazy training:
m Scaling
m Large width + random initialization

30/35

DL Theory - UPS-CS

Lazy training by scaling

Simple way to ensure lazy training: multiply the model outputs by a scale
factor a, while maintaining h(wp) = 0. Then

2
I22hwo)ll

1
Kah(w)(Wo) = EHy”W oo

Consider the linearized model around wy,

h(w) = h(wo) + Dh(wp).(w — wp)

Theorem (Chizat, Oyallon, Bach "19)

For the square loss, if h(wo) = 0, the trajectories of gradient descent following
ah and oh stay within O(1/a?) of each other.

31/35

DL Theory - UPS-CS

Lazy training in oco-width two layer nets

Proposition (Lazy training in infinite-width)

Consider a one-layer hidden layer neural network with m hidden nodes with
Le Cun initialization, then

k(Wo) =0 as m— oo.

Le Cun initialization: all weights are randomly initialized with variance of
inputs of every node that sum to 1.

h(x, wo) Zc, (x"a)

a~N(0,1) ¢ NN(O, 15)
Equivalently:
h(x, wo) = a(m) Y _ cio(x" a)

j=1
with g, ¢; ~ NV(0,1).

32/35

DL Theory - UPS-CS

Lazy training: so what?

Benefits of the lazy training regime
m Neural nets are easy to train in the lazy training

m Great for theory: we can also identify the point of convergence and
study the statistical properties of that point.

BUT limited for practice. Linearized nets behave worse than real life nets.

100] . = jemmmmm———————
90 Model Train acc. Test acc.
train accuracy ResNet wide, linearized 55.0 56.7
P 2 test accuracy VGG-11 wide, linearized 61.0 61.7
70 == stability of activations Prior features [25] - 82.3
K Random features [28] - 842
601 / VGG-11 wide, standard 99.9 89.7
r Ae— ResNet wide, standard 99.4 91.0

10! 103 10° 107 (b)
a (scale of the model)
(@)

Figure 3: (a) Accuracies on CIFAR1O0 as a function of the scaling «.. The stability of activations
suggest a linearized regime when high. (b) Accuracies on CIFAR10 obtained for o = 1 (standard,
non-linear) and o = 107 (linearized) compared to those reported for some linear methods without
data augmentation: random features and prior features based on the scattering transform.

source the paper

33/35

https://arxiv.org/abs/1812.07956

DL Theory - UPS-CS

Conclusion and Next time

Today
m Optimization in linear models
m The Lazy regime

Next time: A closer look at the linearized model for infinite-width
networks Neural Tangent Kernel

34/35

DL Theory - UPS-CS

Conclusion and Next time

Thanks !!
Break

35/35

	Reminder of Last Time and Plan for the Day
	Empirical Risk Minimization II
	Convex Optimisation
	Linear models
	Neural networks and Lazy Training
	Lazy training

