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Reminder of Last Time and Plan for the Day

Last time

Last time:
Supervised learning
Neural nets
The Perceptron: optimization and generalization on (linearly)
separable data

Today: Approximation of neural nets.
Or ’Is there any hope to follow data with arbitrary patterns?’

Reading Material:
Matus Telgarsky’s notes.
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Reminder: Definitions

Recall: Definitions of Neural Nets

Feedforward neural networks
For dimensions p, q, r , a layer is a function Rp → Rr

Φσ,A,b : x 7→ σ
(
Ax + b

)
where σ : Rq → Rr is a simple non-linear function, A is an q × p matrix
and b ∈ Rq is a vector.

A neural network is a function of the form

h : x 7→ ΦσL,AL,bL ◦ · · · ◦ Φσ0,A0,b0(x) .

Terminology: since σL is often the identity, L is the number of hidden
layers aka activation layers (while there are L + 1 layer functions
composed together.)
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Reminder: Definitions

Activation functions
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Reminder: Definitions

Training neural nets in Supervised Learning

Given an n-sample of features and responses. Fix a structure for the net
and compute an (approximate) Empirical Risk Minimizer

arg min
weights

1
n

n∑
i=1

ℓ
(
h(xi), yi

)
.

Typically using a variant of gradient descent on the weights.

Mystery: Why/how/when does it work?
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Reminder: Definitions

One hidden layer neural networks

Focus of today: Shallow nets (2-layer, one hidden layer)

h(x) =
m∑

i=1

ci σ(a⊤
i x + bi)
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The Approximation Question

Practice: Attempt to minimize Empirical Loss for a fixed architecture

Practice: train as long as possible, hope that loss goes as low as
possible. Best case you get to 0.
Ignore the questions of how this is computed. And of whether this
will generalize to unseen data.

Today’s question: Approximation

With high-dimensional data generated by a complicated function. Is there
any hope that a neural net will get good training performance?
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The Approximation Question

Setting: Approximation

Assumption: Bounded features

For all x ∈ X , we have ∥x∥ ⩽ 1 .

Goal: Approximation

Given a continuous function f : X → R, can we find a neural network that
is close to f ?

Even better if
Small net
With small weights
With our favorite activation function
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The Approximation Question

Naive approximation in 1-d

Theorem (Naive approximation)

Let f : [0, 1] → R be a 1-Lipschitz function and ε > 0.
There exists a two-layer ReLU neural net h with Θ(1/ε) nodes such that

∥f − h∥L1 ⩽ ε .

Idea: Discretize space into small intervals and localize approximations

ReLU(x + 2)− 2 ReLU(x) + ReLU(x − 2)
2
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The Approximation Question

Naive approximation and the Curse of Dimensionality

Theorem (Naive approximation)

Let f : [0, 1]d → R be a 1-Lipschitz function in ∥ · ∥∞ and ε > 0.
There exists a three-layer ReLU neural net h with Θ(1/εd) nodes such that

∥f − h∥L1 ⩽ ε .

Proof: Discretize space into small cubes and localize approximations.

Exercise: Write a bump function with three layers.

Issue: high d requires many cubes, thus many nodes. E.g. Cifar-10
images have dim 32 × 32 × 3 = 3072, Imagenet > 500 000.
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The Approximation Question

Generality of approximation

Definition
An activation is sigmoidal if it is continuous,

lim
x→−∞

σ(x) = 0 and lim
x→+∞

σ(x) = 1

Theorem (Universal approximation)

For any sigmoidal activation function σ, any continuous function f and any ε,
there exists a two-layer neural net h with activation σ such that

∥h − f∥L∞ ⩽ ε .

Proof sketch:
Approximate the cos function by a net (width Θ(1/ε) is achievable)
Stone-Weierstrass to algebra generated by x 7→ cos(ax + b)
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The Approximation Question

Universal approximation: so what?

Theorem (Universal approximation)

For any sigmoidal activation function σ, any continuous function f and any ε,
there exists a two-layer neural net h with activation σ such that

∥h − f∥L∞ ⩽ ε .

But this is not constructive enough. What matters for real life is whether
the number of nodes and the magnitude of the weights stay reasonable.

(Could check proofs of Stone-Weierstrass to get an explicit construction,
but typically this yields at least an exponentially bad dependence on d .)
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Barron’s theorem

Barron smoothness: breaking the curse of dimensionality

Barron’s result: (ca. 1993) neural nets can avoid the curse of
dimensionality if we consider a specific notion of regularity.

Reminder: Fourier transform and inverse
Let f be a continuous function from compact X to R. The Fourier
transform of f is the function Rd → C

f̂ (w) =

∫
X

e−2iπw·x f (x)dx .

If f̂ (w) ∈ L1(Rd), then for any x ∈ X ,

f (x) =
∫
Rd

e2iπw·x f̂ (w)dx .

(Remember X is a compact subset of Rd , so a continuous function X → R
is bounded.)
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Barron’s theorem

Barron smoothness

Assumption: Barron smoothness

Let C > 0. We consider functions f : X → R such that∫
Rd

∥w∥2
∣∣̂f (w)

∣∣dw ⩽ C .

Note: this is an assumption on the rate of decay of f̂ at infinity. Therefore
it controls the regularity of f .

Careful: conventions may vary depending on sources (e.g. many define
the Barron smoothness as C/(2π).)

18 / 28



DL Theory – UPS-CS

Barron’s theorem

Barron’s theorem

Assumption: Barron smoothness

Let C > 0. We consider functions f : X → R such that∫
Rd

∥w∥2
∣∣̂f (w)

∣∣dw ⩽ C .

Theorem (Barron’s theorem [’93])
Let f be a continuous function with Barron smoothness C. For any ε > 0,
there exists a two-layer neural net of width less than

k ⩽
8Vol(X )

ε2 (8πC)2 such that ∥f − h∥L2 ⩽ ε .

Proof (Telgarsky): Two important and useful ingredients.
Infinite-width representation via Fourier
Approximate Carathéodory
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Barron’s theorem

Infinite-width representation

Proposition (Infinite-width representation)

Under the previous assumptions, for any x ∈ X

f (x)−f (0) = −
∫

w∈Rd

∫ ∥w∥

b=0
1{w ·x−b ⩾ 0}2π sin

(
2πb+θ(w)

)
|̂f (w)|db dw

+

∫
w∈Rd

∫ 0

b=−∥w∥
1{−w · x + b ⩾ 0}2π sin

(
2πb + θ(w)

)
|̂f (w)|db dw

where θ(w) is the argument of f̂ (w).

Proof: Board

This is an exact representation of f as an infinite-width two-layer neural
network with step function activations.
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Barron’s theorem

From infinite width to finite width

Idea: consider an infinite width neural net of the form

g(x) =
∫

σ(w · x)dµ(w)

where µ is a probability measure. In other words, g is a convex
combination of the functions {x 7→ σ(w · x) : w ∈ Rd}.

We want to approximate g by a neural net with finite width.

Remember Carathéodory’s theorem?
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Barron’s theorem

Approximate Carathéodory

Theorem (Approximate Carathéodory)

If y⋆ is in the closed convex envelope of a compact set Y bounded by B in a
real Hilbert space, for any ε > 0, there exists y1, . . . , yk such that∥∥∥∥y⋆ − 1

k

k∑
i=1

yi

∥∥∥∥2

⩽
B2

k
.

Beautiful proof: Empirical method of Maurey.

With k ⩾ 1/ε2 points, we get squared error ⩽ ε2.
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Barron’s theorem

Approximate Carathéodory applied to infinite width

Consider the Hilbert space L2(X ) and Y = {x 7→ σ(w · x);w ∈ Rd},

g(x) =
∫

σ(w · x)dµ(w).

For any k , there exists w1, . . . ,wk such that∫ (
g(x)− 1

k

k∑
i=1

σ(wi · x)
)2

dx ⩽
B2

k

where
B2 ⩾ sup

w∈Rd

∫
x∈X

σ(w · x)2dx .
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Barron’s theorem

Concluding the proof of Barron’s theorem

Board + notes
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Barron’s theorem

Further comments

On approximation
Nice to get rid of dimension... but we should check the Barron
smoothness.
What about deep nets? There exists small 3-layers nets that cannot
be approximated by small 2-layer nets. This is a benefit of depth.

Beyond approximation
Generalization: possible to get error bounds on the least-square
neural network. But computing this least-squares neural net is
computationally hard.
SGD does not find the weights in the Barron approximation (to my
knowledge).
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Summing Up

Conclusion and Next time

Today: Approximation of neural networks
Shallow neural nets do not suffer from the curse of dimensionality in
approximation: the quality of approximation increases linearly with
the number of nodes, and independently of the dimension
A function can be always be seen as a an infinitetly wide shallow
neural network.

Next time: optimization
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Summing Up

Conclusion and Next time

Thanks !!
Break
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