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Class Presentation

Short Introduction

Hédi Hadiji: hedi.hadiji@l2s.centralesupelec.fr
Ph.D. at Orsay in Bandit theory
Postdoc in Amsterdam on Online Learning
Assistant Professor at L2S of CS

Research area: Mathematician, work in bandits, online optimization and
learning theory. At the intersection of Machine Learning, Statistics and
Optimization.
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Class Presentation

Goal of the Class

Build a Theory of Deep Learning

Describe a theoretical framework which relates to the practice of
deep learning
See how this can inform the intuition of practitioners (?)
Understand the limitations of these approaches

Disclaimer: Deep learning theory is young, active, immature field (e.g. no
established textbooks.) Practical successes are miles ahead of what
theorists can study.
There is not even a consensus on what it means to “understand” deep
learning.
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Class Presentation

Reading Material and References

Standard material: Diverse. Main content is what is discussed in class.
Links on Edunao.

– Deep Learning theory, Lecture notes by Matus Telgarsky
– Theory of Deep Learning, Arora et al.
– Patters, Predictions, Actions, Hardt and Recht

Prerequisites:
– Mathematics: probability theory, real analysis, statistical learning

basics, optimization basics
– Programming: python, numpy, pytorch
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Class Presentation

Assessment

Reading projects: by groups of 2. Each group will be assigned a paper to
present. Last class will be a poster session.

Poster session: print a few slides and prepare to explain the paper to
me in 5 - 10 minutes
Short report: write a 4-8 page discussion on the paper, including a
toy experiment.

More details to come.
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Class Presentation

Timeline

Careful: the rooms change all the time.
– lundi 3 décembre
– lundi 11 décembre
– lundi 18 décembre
– lundi 8 janvier
– lundi 15 janvier
– lundi 22 janvier
– lundi 29 janvier
– jeudi 8 février → Poster session + report.

Each time slot is 1h30 lecture, followed by 1h30 exercise session or
practical session. Please bring your computers.
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Introduction to Deep Learning

Today’s Lecture

Setting up the stage: only shallow learning for now
– Set up some basic mathematical definitions
– Recall the setting of supervised learning
– An example of theory working correctly for 1-layer nets

Reading material for this class:
– Patterns, Prediction and Actions, Chapter 3
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Introduction to Deep Learning

What is Deep Learning Theory?

What is Deep Learning?

Machine learning methods that involve deep neural networks, i.e., a
function Rd → Rp that can be represented by a computational graph.

Examples of deep learning architectures, from the IBM blog
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Introduction to Deep Learning

What is Deep Learning Theory?

Practical success of DL

State of the art in:
vision (classification, detection, segmentation, ..)
natural language processing (machine translation, information
extraction, ...)
protein folding
generative AI (image, text, music, ...)
reinforcement learning (games, robotics(?))

Every aspect of engineering has been affected by deep learning.

Particularly relevant for our class: deep neural nets are the go-to tool for
most Supervised Learning task.

10 / 33



Introduction to Deep Learning

What is Deep Learning Theory?

Deep learning in practice

Important real life components of deep learning: large computational
power (GPUs) + tricks + empirical knowledge + trial and error.

Regularisation tricks like
learning rate schedules,
data augmentation,
weight decay,
early stopping,
ensembles (combine predictions of different models),
stochastic regularization (e.g. dropout).

We ignore these aspects in this class: theory is about simplified models.
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Introduction to Deep Learning

What is Deep Learning Theory?

What is Deep Learning Theory?

A model h is a function from feature space X to the response space Y ,
parameterized by some weights (or parameters).

For theory, what distinguishes deep nets is that they are:
highly non-linear: composition of many non-linear functions
overparameterized: models have many more degrees of freedom
than the number of data points they are trained on
efficiently differentiable: GPUs + backpropagation allows for fast
computation of gradients.

Goal of the class
Why do methods that combine these three aspects have good practical
success?

Already more concrete and modest than ’understand’ deep learning... but
still quite out of reach. Let us make the question more concrete first.
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Supervised Learning
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Supervised Learning

Supervised Learning

Goal
Learning by examples: predict the response Y to some input X , based on
examples.

Examples of Supervised Learning tasks
- X temperature + cloud positions today; Y temperature tomorrow
- X first words in an English sentence; Y next word
- X image; Y whether it contains a cat or not
- X sequence of amino acids; Y protein shape
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Supervised Learning

Supervised Learning: Formal Framework

A learner has access to a sample S of n data points (Xi ,Yi)1⩽i⩽n.
Xi ∈ X are called features
Yi ∈ Y are called responses (or labels when Y is finite)

The data are i.i.d. from an unknown distribution (Xi ,Yi) ∼ D over X × Y .

The goal of the learner is to output a prediction Ŷ of the response Y for
new features X not in the sample.

The quality of prediction is measured by a loss function ℓ(·, ·) : Y × Y → R.

Objective of Supervised Learning

Given a sample S, find a hypothesis hS : X → Y such that the risk

R(hS) = E(X ,Y )∼D
[
ℓ(hS(X ),Y )

]
is small with high probability.

(Note that the quantity above is a random variable because hS may
depend on the sample. This is deliberately left vague for the moment.)
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Supervised Learning

Empirical Risk Minimization

Perhaps the most natural idea in supervised learning is to look for a
hypothesis that minimizes the empirical risk

h ∈ argmin
?

1
n

n∑
i=1

ℓ(h(Xi),Yi) .

This raises questions:
0 How should one choose the hypothesis space H over which to

perform the minimization?
1 Optimisation: how would we compute this minimiser?
2 Generalization: why would this be good?

Terminology: we denote the empirical risk on sample S as

R̂S(h) =
1
n

n∑
i=1

ℓ(h(Xi),Yi)
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Supervised Learning

Example: Linear Least-squares Regression

Setting: X = Rd and Y = R

Linear Models
Take H to be the set of affine functions Rd → R, i.e. functions of the form

hw,b : x 7→ ⟨w , x⟩+ b ,

for some w ∈ Rd and b ∈ R.

Square loss

ℓ(ŷ , y) =
1
2
(ŷ − y)2

Then ERM is the least-squares

(ŵ , b̂) ∈ argmin
w,b

{
1
2

n∑
i=1

(
⟨w ,Xi⟩+ bi − Yi

)2
}

can be computed explicitly.
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Supervised Learning

Example: Neural networks

Setting: X = Rd , Y = Rp

Feedforward neural networks
For dimensions p, q, r , a layer is a function Rp → Rr

Φσ,A,b : x 7→ σ
(
Ax + b

)
where σ : Rq → Rr is a simple non-linear function, A is an q × p matrix
and b ∈ Rq is a vector.

A neural network is a function of the form

h : x 7→ ΦσL,AL,bL ◦ · · · ◦ Φσ0,A0,b0(x) .

Loss depends on applications.
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Supervised Learning

Example: Neural networks II

A neural network is a function of the form

h : x 7→ ΦσL,AL,bL ◦ · · · ◦ Φσ0,A0,b0(x) .

The sequence of activation functions (σi) and dimensions determine the
architecture, and the values of (Ai) and (bi) the weights of a model.

In practice, training a model means finding weights with small empirical
risk (aka train loss), with an optimiser based on gradient descent.

(We will expand on this example in future classes :) )

19 / 33



Supervised Learning

What there is to understand in deep learning

Phenomena of interests to theorists in this class:
Approximation Deep neural nets can approximate functions well
Optimization Deep neural nets are efficiently trainable
Generalization Small training loss converts to small test loss
Representation learning Deep nets “learn useful features” (e.g.,
trained convolutional layers look like filters)

Successful theory should explain these phenomena.

(Other crucial aspects that are not discussed in this class: explainability,
uncertainty quantification, robustness)
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The Perceptron

Presentation

The Single-Layer Perceptron

The Future of the Past of AI:

Invented by Rosenblatt, before general purpose computers.
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The Perceptron

Presentation

Setting: Binary classification

X = Rd and Y = {−1, 1}. Goal: 0-1–loss, i.e. ℓ(ŷ , y) = 2 · 1{ŷ ̸= y} − 1.

Assumption: Separable distribution

The data comes from a distribution D such that the samples are linearly
separable with probability 1.

(Very strong) assumption
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The Perceptron

Presentation

Binary classification with linear models

We parameterize hyperplanes by orthogonal vectors, i.e., for w ∈ Rd ,
denote by

Hw = {x ∈ Rd |⟨x ,w⟩ = 0} and hw (x) = 1{⟨x ,w⟩ > 0}.

The Perceptron will pick a hypothesis among the ones of this form.

Definition (Margin of a separating hyperplane)

The margin γ(S,w) of a hyperplane Hw that separates the data S is the
distance between the hyperplane and the closest point instance.

If the margin is big, we can move the hyperplane and keep a good score.
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The Perceptron

Presentation

The Perceptron: Algorithm

Objective of the Perceptron

Find a hyperplane Hw that separates the data with some margin.

Algorithm: Perceptron
Dataset S
Initialize: w0 = 0
for t = 0, 1, 2 . . . , do

- Choose an index i ∈ {1, . . . , n}

wt+1 =

{
wt + yixi if ⟨w , xi⟩yi < 1

wt otherwise.

end

We say the algorithm makes a margin mistake if ⟨w , xi⟩yi < 1.
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The Perceptron

Analysis I: Optimization

Perceptron finds a separating hyperplane

Define the diameter of the sample and the sample margin to be,
respectively

D(S) = max
(x,y)∈S

∥x∥ and γ(S) = max
w∈Rd

separating

min
(x,y)∈S

d(x ,Hw ) .

Theorem (Mistake Bound for the Perceptron, (Novikoff))

If a sample S is linearly separable, then the Perceptron algorithm makes at
most

2 + D(S)2

γ(S)2

margin mistakes.

Proof: Board.
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The Perceptron

Analysis II: Generalization

Generalization of the Perceptron

We know that the Perceptron finds a separating hyperplane, i.e., classifies
the sample perfectly.

What about unseen data? We can bound the probability of error of the
perceptron, if we make some assumptions on the distribution.

Assumption: Separable distribution

The data comes from a distribution D such that the samples are linearly
separable with probability 1.

i.e., there exists w ∈ Rd such that P(X ,Y )∼D[Y = 1 | ⟨X ,w⟩ > 0] = 1.
(ignoring the cases in which P[⟨X ,w⟩ = 0] > 0)
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The Perceptron

Analysis II: Generalization

Generalization of the Perceptron

Theorem (Generalisation of the Perceptron)

For a linearly separable distribution D, if w(Sn) is the output of the
Perceptron on sample Sn, then the probability of making a margin mistake on
future data is bounded by

P(X ,Y )∼D
[
Y ⟨w(Sn),X ⟩ < 1

]
⩽

1
n + 1

ESn+1∼D⊗(n+1)

[
2 + D(Sn+1)

2

γ(Sn+1)2

]

This is an example of a stability argument, a general and powerful
principle to derive generalisation bounds.

Stability argument

Algorithms that do not depend too much on a single data point
generalize well

Proof: Board.
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Conclusion

Lessons from the Single-Layer Perceptron

When binary classification data is linearly separable, the Perceptron:
– Finds a separating hyperplane efficiently
– This separating hyperplane has good quantifiable performance on

unseen data
E.g., if we want to predict with 99% accuracy on data with features of
norm ⩽ D and margin ⩾ γ, it suffices to train a Perceptron on enough
sample points to have

(2 + D2)/γ2

n1% + 1
⩽ 1%, i.e. n1% ⩾ 100

2 + D2

γ2 − 1 .

... and the proof is simple!

Can we get a similar result for a Resnet on Imagenet data?
Probably not... but we can try
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Conclusion

Challenges in understanding deep learning

All of this was nice, but:
Most data is not separable, hence non-linear methods.
The single-layer perceptron can be seen as some form of gradient
descent on a convex surrogate loss function. For multi-layer nets, the
loss landscape is very non-convex. Why does gradient descent still
work there?
The generalization proof we saw is very specific to the algorithm.

We will discuss these points in later lectures.
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Conclusion

Next Time: Approximation in neural nets

What if data is not linearly separable? If we understand the geometry
well, can use kernels.

What about cats vs. dogs in images? Can we guess the correct geometry
to separate the data?

If data is not linearly separable. Use non-linear methods. We will prove
that neural networks can approximate arbitrarily well any function
(Barron’s theorem).
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Conclusion

Thanks!
Let’s have a break
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