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Online Convex Optimization

Protocol: Online Convex Optimization

1: given: (bounded) decision set W C R¢

2: fort=1,...,T

3: Player chooses w; € W

4 Nature outputs convex loss ¢; : YW — R

[Zinkevich ’03]

Goal: minimize regret Rr(u) = th(wt) —
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No assumptions on how the losses are generated

Nature can be an adversary who knows the algorithm!



Example: Online Spam Filtering

Training a linear model to filter spams

Email z: € R outcome y: =1 —2-1{x; is spam} € {—1, +1}

Get w; from an OCO algorithm

(we, x4) <0 Ty

Spam Inbox
m-

Proxy: Minimize loss: e.g., £, : w — (y; — (w, 24))?

Regret: learn to filter as well as the ‘best’ linear model in hindsight



Plenty of Other Examples

see surveys by [Hazan ’16, Orabona ’19]

- Prediction with Expert Advice [Freund and Schapire ’97]
- Portfolio Selection [Cover '91]
- Online Routing

- Batch Optimization

- ....and many more



Worst-Case Regret in OCO

Theorem: Minimax Rates for OCO D is the diameter of VWV

minmax Ry =< DGVT G = ||gs|
Ale G gs = Vi (ws)

T
Linearized regret th we) — Le(u) < (Vl(wy), we — u)
t=1

_ t—1 5
Upper bougd. FTRL v & argmm{z 0. 0) - |w]| }
Nt = eNGa weW —1 Tt

Lower bound: linear losses, pure noise (nhothing to learn)

(Online Gradient Descent (aka SGD) also reaches the minimax rates)



Easy Data

Losses are often far from worst-case

- Small gradients [Zinkevich’03, Duchi’10], Small comparator
[Orabona, Cutkosky]

- Both [Mhammedi, Koolen 20, Mayo, Hadiji, van Erven ’22]
- Predictable gradients [Rakhlin, Sridharan’13]

- Many more... (curved losses, extra information available, etc.)

This work:
losses = (smooth) stochastic + slowly-varying adversarial




Stochastic Data

Stochastic Optimization, Online-to-Batch

Losses from i.i.d data E (i (z)| = F(x) for all t
T
L earner gets w,; from an OCOQO algorithm wp = l Z w
g ¢ g T e - t
| T
E[F(wr)] — min F(u) < #E{Z F(we) — F(w*)}

Conversely, given (¢;)s<:—1, learner can simulate an optimization algorithm



Stochastic Data

Faster Rates with Smoothness [Allen-Zhu, Orecchia '17]

Smoothness: w — VF(w) is L -Lipschitz

vr T

If ' is smooth: optim error O (D—\/%’) improves to O(

Do | LD2>
where o > E[|ge — VF(w)]|?]

mm)  Regret should scale as E[Rr] < O(DovT + LD?)

..e., replace magnitude of the largest gradient with variance
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Stochastic Extended Adversary

Protocol: OCO with a Stochastic Extended Adversary

1: given: (bounded) decision set YW C R

2: fort=1,...,T

3: Player chooses w; € W

4 Adversary picks distribution D; over convex losses, outputs £; ~ D;

. ST
Goal: minimize
expected regret ElRr(u) =E Zét(wt) — l¢(u)
L t=1 |
Stochastic Dy =---=Drp
Generalizes

Fully Adversarial Dy = 9y,



Algorithm: Optimistic FTRL

Exploiting Regularity/Predictability of the Data

(t—1 9
Optimistic FTRL 4, € argmin{ S (ga, w)-+(M;, w) | |w]| }
[Rakhlin, Sridharan ’13] wew | 5o "It

Better bounds if M; ~ ¢; (but M; is chosen before g; )
Smoothness of expected losses: g; ~ ¢g;_1 In expectation

Adaptive tuning of the learning rate, a la AdaHedge [de Rooij et al. *11]



Et[] - = EetNDt[.]

O-FTRL and the SEA

Assumptions:  Fi :w — Ei [l (w)] is L-smooth

E: |||V (w) — VE(w)]]?] < o}

Theorem: Optimistic AdaFTRL Regret Bound

ElRr(u)] < O(D\ D of+ Z sup [|[VE (w) = VFi(w)]]* + C)

P 1wEW

- Fully adaptive (only input is D)
- C=C(G, L)

- Key technical ingredient: keeping negative stability terms Iin
analysis (a la [Nemirovski '05])



Analysis

(up to constants and additive terms)

Hwt - wt+1H2
nr 21

O-FTRL Analysis

T T 5 . .
— Adaptive Learning Rate
< D § L B 2 E Hwt 'UJt_|_1H
\ 90 = ge-1 21y My = gt

_ L |we — wt+1H
E[Rr(u)] < D\ ;E[Hgt ge—1/1?] {Z }
\

Usually thrown away



Analysis i

B[R (] < Dy 3 _Ells ~ 9] {Z”wt wt”ﬂ

Bounded in expectation by

lge = ge—1 [ <4( IV (we) — VEy(wy)]? o}
+ [|[VE (wy) — VF (we—1)]|? L |lwe — we—a[|* X
+ IVE (wieq) — VF_q (we_q)|? ltself
+ IVFi_q(wi—1) — V1 (we1)]]?) i

( Use negative terms to cancel

T
1
D\LQZE lwe — w1 |?] —n—ZHwt wi—1°
1

t—=

1
X? L?D?
< sup {LDX } = L
XeR 2m 2




Application: Random Order OCO

[Garber et al. ’20, Sherman et al. ’21]

Adversary selects a set of loss functions, but not the order
L=l |sel[l]}
Practitioners shuffle their data before optimization

Fits in the SEA framework: 7(s) is the s-th observed loss

T
. 1
Dt — Unif (ﬁ \ {577(1), S 7€7r(t—1)}) : Ft (w) — — ZW(S) (w)
T—t+1 ZS:t

Almost i.i.d. with expected loss F'(w Z ls(w) but not quite

Sampling with replacement vs. Sampllng W|thout replacement



Random Order OCO i

Analysis
Theorem: Random Order OCO

4AG?
(T —t +2)2

Proof: a few lines |VF.(z) - VF_i(2)|]* <

T
2< 2
ST 11°




Application: Adversarial Perturbations

* Adversarially perturbed stochastic data:
Ei[le(w)] = F(w) + cr(w)
 F'is smooth and ¢; are small adversarial perturbations

Theorem: Regret against Perturbed Losses

@02+C)

< O(Daﬁ—l— DZ sup ||Ve(w)|| + C)

1 weW




More in the paper and Future Work

- In the paper:

- Strong convexity
- Lower bounds

- Future Work

- In practice, SGD performs well: extend analysis and identify its limits

- Bounded regret for stochastic experts with perturbations (Ilto '21):
unifying analysis + optimality with arbitrary decision set?

- Unifying analyses that keep the negative terms (acceleration, games)
- Dynamic regret, Minimax Optimization

- Improve applications/find lower bounds



Thank you!



