Decentralized Online Convex Optimization

joint work with Tim van Erven (UvA) and Dirk van der Hoeven (Leiden/Milan)

Introduction

Online learning/Online optimization

 Data/Objective coming in a stream, as the optimization is made

Federated learning

Multiple agents collaborating to learn

Adaptive algorithms

As little manual tuning as possible

(Unconstrained) Online Convex Optimization

Setting

Zinkevich '03, McMahan Streeter '12, Orabona '19, Hazan '19

Adversary prepares a sequence of convex loss functions $\ell_t : \mathbb{R}^d \to \mathbb{R}$ At every time step:

- Player picks action $w_t \in \mathbb{R}^d$
- Adversary reveals loss ℓ_t

$$R_T(u) = \sum_{t=1}^T \ell_t(w_t) - \ell_t(u) \leqslant \sum_{t=1}^T \langle w_t - u, \nabla \ell_t(w_t) \rangle$$

Online Convex/Linear Optimization

Examples (see e.g. Cesa-Bianchi, Lugosi '06; Hazan '19)

- Prediction with expert advice. Actions: d-simplex, linear losses
- Online (supervised) learning: choose w_t to predict y_t , suffer loss $\ell(w_t, y_t)$
- Convex/Stochastic optimization $\ell_t = F(\cdot, \xi_t)$
- Portfolio selection, applications to boosting, learning equilibria in repeated games, etc.

• Generalizations: partial information, non-stationary regret, robustness, delays, ...

Main algorithm: Online Gradient Descent

Fixed step-size analysis (Zinkevich '03)

At time $t+1 \geqslant 2$,

- receive ℓ_t , compute $g_t = \nabla \ell_t(w_t)$
- play $w_{t+1} = w_t \eta g_t$

Parameters:

- step-size $\eta > 0$
- $-w_1 = 0$

$$R_T(u) \leqslant \frac{\|u\|^2}{2\eta} + \frac{\eta}{2} \sum_{s=1}^T \|g_t\|^2$$

if
$$||u|| \le U$$
 and $||g_t|| \le G$, then setting $\eta = G/(U\sqrt{T})$

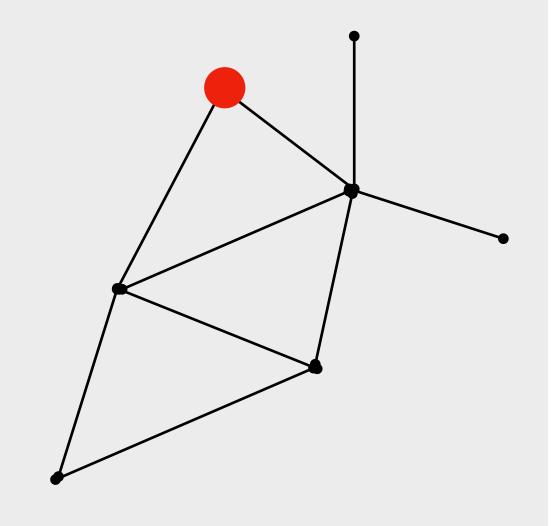
$$R_T(u) \leqslant UG\sqrt{T}$$

worst-case optimal

Decentralized OCO

Given graph \mathcal{G} , at every time step t,

- Adversary picks node n_t -
- Node n_t picks action $w_t \in \mathbb{R}^d$
- Adversary reveals convex loss function $\ell_t: \mathbb{R}^d o \mathbb{R}$
- All nodes communicate with neighbors



Minimize joint regret

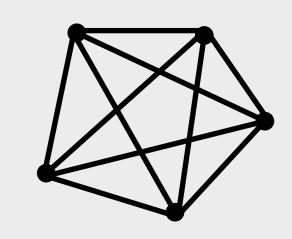
$$R_T(u) = \sum_{t=1}^{I} \ell_t(w_t) - \ell_t(u)$$

Related: Decentralized Optimization and Gossip

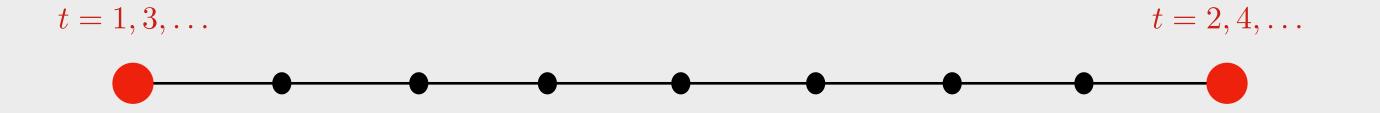
Hsieh et al. '20; Cesa-Bianchi et al. '20;

Special Cases

Complete graph ⇔ One single player



D-line with activation alternating at endpoints



~D/2 losses are missing at active node

What happens to Gradient Descent?

Natural idea: every node subtracts $-\eta g$ for every new gradient g observed

Let w_t^* be the updates of oracle GD that knows all gradients

$$\sum_{t=1}^{T} \langle w_t - u, g_t \rangle = \sum_{t=1}^{T} \langle w_t^{\star} - u, g_t \rangle + \sum_{t=1}^{T} \langle w_t - w_t^{\star}, g_t \rangle$$
Regret of oracle GD
$$w_t - w_t^{\star} = \eta \sum_{s \in \gamma(t)} g_s$$

$$R_T \leqslant \frac{\|u\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^T \left(\|g_t\|^2 + 2\|g_t\| \sum_{s \in \gamma(t)} \|g_s\| \right)$$

Decentralized GD II

$$R_T \leqslant \frac{\|u\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^T \left(\|g_t\|^2 + 2\|g_t\| \sum_{s \in \gamma(t)} \|g_s\| \right)$$

At most $D(\mathcal{G}) - 1$ gradients are missing

$$|\gamma(t)| \leqslant D(\mathcal{G}) - 1$$

$$R_T(u) \leqslant \frac{\|u\|^2}{2\eta} + \frac{\eta}{2}G^2 \sum_{t=1}^T (1+2|\gamma(t)|) \leqslant \frac{\|u\|^2}{2\eta} + \frac{\eta}{2}G^2(2D(\mathcal{G})-1)T$$

$$R_T \leqslant \sim UG\sqrt{D(\mathcal{G})T}$$

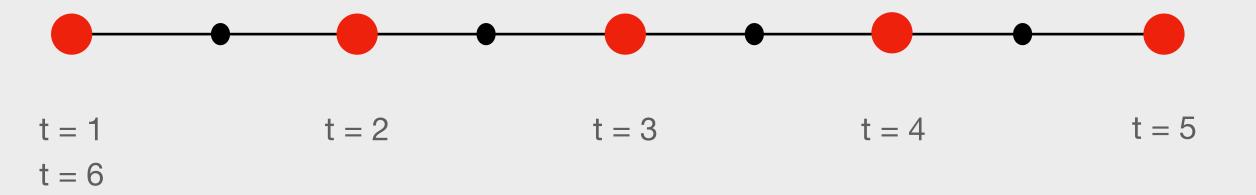
worst-case optimal

Worst-case Activation Sequence

<u>Theorem</u>: For any graph, for any algorithm, there exists an activation sequence and losses such that

$$\max_{\|u\| \leqslant U} R_T \geqslant c \ UG\sqrt{TD(\mathcal{G})}$$

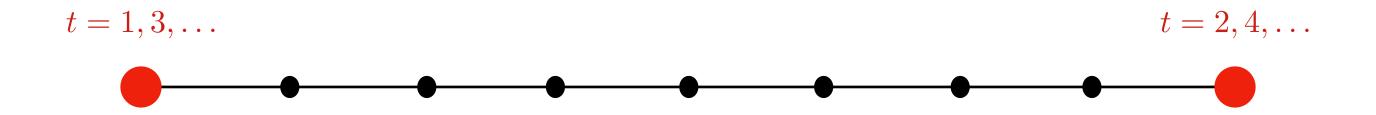
Proof: Pick a maximal-length path



Adversary can play the same gradients D / 2 times

But might be suboptimal for specific cases

Recall the line



- Ignoring missing gradients: $R_T \leqslant UG\sqrt{2T} \ll UG\sqrt{D(\mathcal{G})T}$
- But ignoring missing gradients is bad in general (up to $UG\sqrt{|\mathcal{N}|T}$)

How to adapt to the activation sequence?

Comparator-Adaptive Algorithms

also called parameter-free, or model selection type-bounds

<u>Theorem</u>: There is an algorithm for Decentralized-OCO s.t. for user-specified B>0

$$R_T(u) \leqslant \|u\|G\sqrt{D(\mathcal{G})T\log\left(1+rac{TG\|u\|}{B}
ight)} + B \; ext{ for any } u \in \mathbb{R}^d \; \text{, } T>0 ext{ and } \mathcal{G}$$

The simpler the comparator is, the smaller the regret bound

In particular, $R_T(0) \leqslant B$

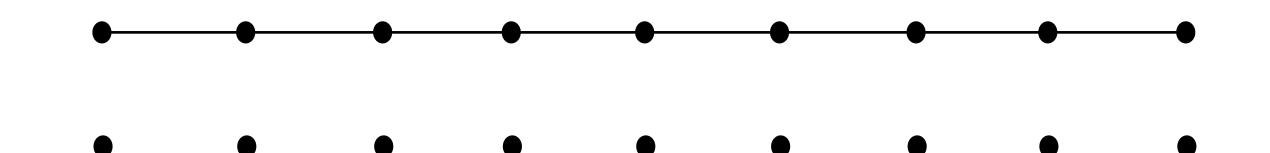
In OCO: McMahan Streeter '12; Orabona; Cutkosky; Koolen, Mhammedi and van Erven '19; Foster et al. '18;

Iterate Addition

Back to the line example

- Each node keeps two algorithms:

$$w_t^{(G)}$$
: iterates of $\mathcal{A}(\mathcal{G})$ $w_t^{(n)}$: iterates of $\mathcal{A}(\{n\})$



– and active node n_t plays $\left| \begin{array}{c} w_t^{(n_t)} + w_t^{(\mathcal{G})} \end{array} \right|$

$$w_t^{(n_t)} + w_t^{(\mathcal{G})}$$

Iterate Addition II

Adding iterates guarantees both

$$\sum_{t=1}^{T} \langle w_t^{(n_t)}, g_t \rangle + \sum_{t=1}^{T} \langle w_t^{(\mathcal{G})} - u, g_t \rangle$$

$$\sum_{n \in \mathcal{N}} R|_{\{n\}}(0) + R_T(u)$$

$$|\mathcal{N}|B + ||u||G\sqrt{D(\mathcal{G})T\log\left(1 + \frac{T||u||G}{B}\right)} + B$$

$$\sum_{t=1}^{T} \langle w_t^{(n_t)} - u, g_t \rangle + \sum_{t=1}^{T} \langle w_t^{(\mathcal{G})}, g_t \rangle$$

$$\sum_{n \in \mathcal{N}} R|_{\{n\}}(u) + R_T(0)$$

$$|\mathcal{N}|B + ||u||G\sqrt{D(\mathcal{G})T\log\left(1 + \frac{T||u||G}{B}\right)} + B \qquad \sum_{n \in \mathcal{N}} ||u||G\sqrt{T^{(n)}\log\left(1 + \frac{T^{(n)}||u||G}{B}\right)} + |\mathcal{N}|B + B$$

(almost) worst-case optimal

better when only one node is selected

More generally

Learning as well as the best Q-partition

Given a collection of subgraphs Q play

$$w_t = \sum_{\mathcal{H} \in Q} w_t^{\mathcal{H}} \mathbf{1} \{ n_t \in \mathcal{H} \}$$

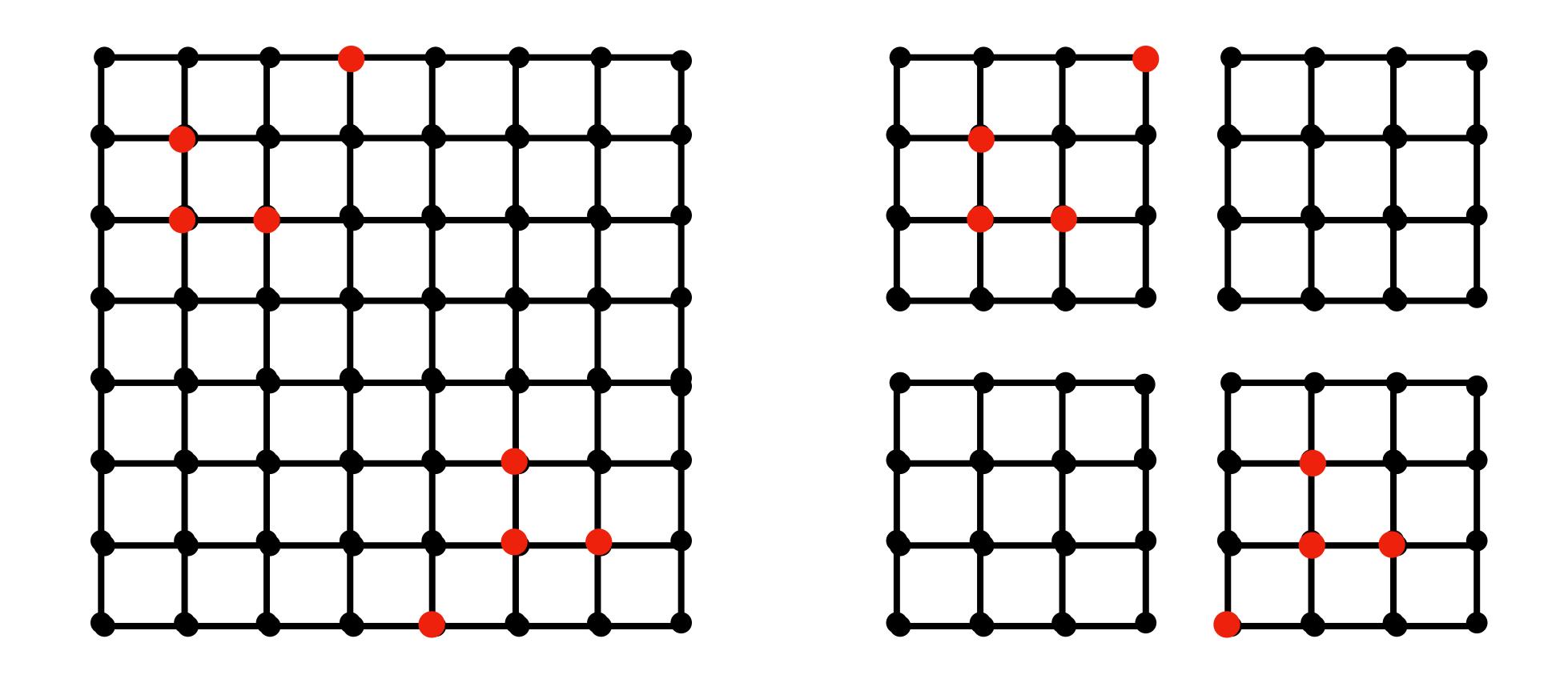
• For any partition $\{\mathcal{F}\}$ of the graph made of elements in $\mathcal Q$

$$R_{T}(u) \leqslant \sum_{\mathcal{F}} R|_{\mathcal{F}}(u) + (|\mathcal{Q}| - |\{\mathcal{F}\}|)B$$

$$\leqslant ||u||G \sum_{\mathcal{F}} \sqrt{D(\mathcal{F})T^{(\mathcal{F})} \log\left(1 + \frac{T^{(\mathcal{F})}||u||G}{B}\right)} + |\mathcal{Q}|B$$

More generally

Learning as well as the best \mathcal{Q} -partition



What's more

In the paper

Adapt to small gradients

 $R_T(u) \leqslant \sim \|u\| \left(\sqrt{\Lambda_T \ln\left(1 + \frac{\|u\|\Lambda_T}{B}\right)} + D(\mathcal{G})G \right) + B$ where $\Lambda_T = \sum_{t=1}^T \|g_t\|^2 + 2\|g_t\| \sum_{s \in \gamma(t)} \|g_s\|$

• Limited communication bandwidth: nodes can send k-bit messages

In the future

- Relax the synchronisation assumptions
- Study more in depth more efficient ways to communicate gradients
- Computational complexity? Reducing the number of algorithms maintained?