Decentralized Online Convex
Optimization

joint work with Tim van Erven (UvA) and Dirk van der Hoeven
(Leiden/Milan)

Hedi Hadiji (University of Amsterdam), a Nantes le 22/02/2022

Introduction

Online learning/Online optimization Federated learning
» Data/Objective coming in a * Multiple agents collaborating
stream, as the optimization is to learn
made

Adaptive algorithms

* As little manual tuning as possible

(Unconstrained) Online Convex Optimization

Setting Zinkevich ‘03, McMahan Streeter 12, Orabona 19, Hazan '19

Adversary prepares a sequence of convex loss functions ¢; : R — R
At every time step:

- Player picks action w; € R

- Adversary reveals loss /;

T
Minimize regret Zét w) = Ly(u) < Y (wp —u, Ve (wy))
t=1

Online Convex/Linear Optimization

Examples (see e.g. Cesa-Bianchi, Lugosi ’06; Hazan ’19)

* Prediction with expert advice. Actions: d-simplex, linear losses
* Online (supervised) learning: choose w; to predict y;, suffer loss ¢(w;, y;)

« Convex/Stochastic optimization ¢; = F (-, &)

» Portfolio selection, applications to boosting, learning equilibria in repeated
games, etc.

* Generalizations: partial information, non-stationary regret, robustness, delays, ...

Main algorithm: Online Gradient Descent

Fixed step-size analysis (Zinkevich ’03)

Attimet+ 1 > 2, Parameters:
- step-sizen > 0
- receive /; , compute g, = V4 (w;) - W1 =

- play wi11 = wy — ngy

if|lu|]| <U and |l¢:]| < G, then setting n=G/(UVT)

Rr(u) S UGVT worst-case optimal

Decentralized OCO

Given graph G , at every time step ¢,

- Adversary picks node n; @
- Node n; picks action w; € R?
- Adversary reveals convex loss function ¢; : RY — R

- All nodes communicate with neighbors
T
Minimize joint regret Ry (u) = th(wt) — 0 ()
t=1

Related: Decentralized Optimization and Gossip Hsieh et al. '20; Cesa-Bianchi et al. '20;

Special Cases

 Complete graph < One single player @

* D-line with activation alternating at endpoints

~D/2 losses are missing at active node

What happens to Gradient Descent?

Natural idea: every node subtracts —ng for every new gradient g observed

Let w; be the updates of oracle GD that knows all gradients

T
Zwt—ugt Z t — U, gt +Zwt Wy, Gt)
t=1 t=1

~~

t=1

Regret of oracle GD wy —wy =1 Z s

T
HuH2 U
Ry < "5 Z |gell” + 2/ g: Z 195 ||

sey(t)

Decentralized GD I

RT\

At most D(G) — 1 gradients are missing

o -
Z 911" + 2|l g Z 195 ||

sey(t)

Jul]?

-2
o | 2G (2D(G)

worst-case optimal

)T

Worst-case Activation Sequence

Theorem: For any graph, for any algorithm, there exists an activation sequence
and losses such that

max R > c UG\/TD(Q)

Jul|l<U

Proof: Pick a maximal-length path

t=1 t=2 t=3 t=4 t=25
t=6

Adversary can play the same gradients D / 2 times

But might be suboptimal for specific cases

e Recall the line

» Ignoring missing gradients: R < UGV2T < UG+/D(G)T

» But ignoring missing gradients is bad in general (up to UG+/|N|T')

How to adapt to the activation sequence?

Comparator-Adaptive Algorithms

also called parameter-free, or model selection type-bounds

Theorem : There is an algorithm for Decentralized-OCO s.t. for user-specified 5 > 0

TG
Rr(u) < uG\/D(g)Tlog (1 | B\JuH) + B foranyu e R* ,T >0and G

The simpler the comparator Is, the smaller the regret bound

In particular, Rr(0) < B

In OCO: McMahan Streeter ‘12; Orabona; Cutkosky; Koolen, Mhammedi and van Erven ’19; Foster et al. ’18;

Iterate Addition Cutkosky 19

Back to the line example

- Each node keeps two algorithms:

w! % iterates of A(G) Sy
(”) . iterates of A({n}) ¢ o o o o o

(124) 9)

- and active node n; plays | w, " + w§

Iterate Addition I

Adding iterates guarantees both

T T T T
S wi™ g + > (wy? —u, gy S ™ —uyg) + Y (Wi, g
t=1 t=1 t=1 t=1
Z R|(ny(0) + Rr(u) Z R|(ny(u) + R (0)
neN neN

A T(n)
N|B + uG\/D(Q)Tlog (1 | HZ)HG) +B |) uG\/T<n> log (1 | l‘;“"G) + |N|B+ B
neN

(almost) worst-case optimal better when only one node is selected

More generally

Learning as well as the best O-partition

e Given a collection of subgraphs Q play

Wt = Z wt1{n, € H}
HeQ

« For any partition {7} of the graph made of elements in O

Rr(u) <) R|#(u)+ (1Q — {F}|)B

< ullG D ([D(F)TP) log (1 I

More generally

Learning as well as the best O-partition

What’s more

Ry(u) <~ |ul (\/AT In (1 : ”“LAT) +D(Q)G) +B

1
where Ar =" [lgell? + 2llgel D llgsl
t=1

s€y(t)

In the paper

 Adapt to small gradients

* Limited communication bandwidth: nodes can send k-bit messages

In the future

* Relax the synchronisation assumptions
o Study more in depth more efficient ways to communicate gradients

 Computational complexity”? Reducing the number of algorithms maintained?

