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Gold panning in a river

What strategy to

 get as much gold as possible? 

Making as few assumptions

 as necessary

A = [0, 1]

0

1

X = [0, 1]

Every day t = 1, . . . ,

– Pick a spot Xt � [0, 1] on the river

– Get Yt grams of gold



Gold panning in a river

A = [0, 1]

0

1

X = [0, 1]

Modelling issues: 
What is the maximum reward one can get in a single round?
How evenly are the rewards distributed across space?

Should we just guess?

This will crucially affect our decisions!



How does prior information about the rewards 
affect optimal strategies?

what is the maximum reward I can get in a single round?

🤔
how evenly are the rewards distributed across space?

🤔



Outline

• I/ Multi-armed bandits


• II/ Adapting to the unknown range of the rewards


• III/ Continuous bandits and smoothness



Multi-armed bandits [Robbins 1952][Thompson 1933]

Minimize regret

At every time-step t the player:

– chooses an action At

– receives and observes reward Yt � �At given At

K probability distributions (�1, . . . , �K) unknown to the player

RT = Tµ� � E
� T�

t=1

Yt

�
= Tµ� � E

� T�

t=1

µAt

�

Prior knowledge = assumption on �1, . . . , �K

µi = E(�i)



Upper-Confidence Bounds [Auer, Cesa-Bianchi, Fischer, ’02]

Distribution-free

RT � c
�

KT ln T + K

�1, . . . , �K are supported in [0, 1] � all rewards are in [0, 1]

Draw every arm once

Ua(t) = �µa(t) +

�
2 log t

Na(t)

Then draw arm At maximizing the index

Empirical mean of rewards from arm a Number of times a was picked

Distribution-dependent

RT �
K�

a=1

8

µ� � µa
log T +

K�

a=1

(µ� � µa)



Improving UCB:  two types of optimality
UCB explores a bit too much: we can reduce the confidence bounds and get better guarantees

MOSS [Audibert, Bubeck ’09]
[Degenne, Perchet ’16]

RT � c
�

KT ln T + K

KL-UCB [Cappé, Garivier, Maillard, Munos, Stoltz ’13]

Kinf(�a, µ�) = inf
�

KL(�a, ��) | E(��) > µ� and ��([0, 1]) = 1
�

RT !
K∑

a=1

µ! − µa

Kinf(νa, µ!)
log T + cst

None are further improvable [Auer, Cesa-Bianchi, Freund, Schapire ’02], [Lai & Robbins 1985]

Theorem: KL-UCB-switch [Garivier, H, Ménard, Stoltz ’18]

KL-UCB-switch is both distribution-dependent and distribution-free optimal

[Garivier, Ménard ’17] obtain joint optimality in a parametric setting



What if the range is unknown? 

rewards are in [m, M ] instead of [0, 1], and m and M are unknown to the player?



Unknown range: initial remarks

1.
Yt � m

M � m
� [0, 1]

playing with rescaled rewards is equivalent 

to standard game with regret scaled by (M-m)


… but we cannot rescale

sup
Problems in [m,M ]

RT � c (M � m)
�

KT3. Not knowing the range is harder than knowing the range

(KL-)UCB, MOSS, etc. are scale-dependent2.

Can we match this lower bound without knowing m and M?

�µa(t) + (M � m)

�
log t

Na(t)



Unknown range: distribution-free adaptation

Theorem: Minimax range adaptation (H, Stoltz 2020)

AdaHedge for bandits with extra-exploration, guarantees

for all m < M, sup
Prob in [m,M ]

RT � 7(M�m)
�

TK ln K+10(M�m)K ln K

AdaHedge is from de [Rooij, van Erven, Grünwald, Koolen ’13]

But can we get distribution-dependent log T bounds?

Same guarantees as if we had known the range in advance!

extra-exploration forces at least RT � (M � m)
�

KTObstacle:

[Cesa-Bianchi, Mansour, Stoltz ’07]



Adaptive rates

Can we get log T and
�

KT simultaneously?

e.g. enjoys Bandit AdaHedge �free(T ) =
�

TK ln K

For all T , for all M > 0, sup
Problems in [0,M ]

RT ! M Φfree(T )Distribution-free rate

�Ua(t) = �µa(t) + (log t)

�
log t

Na(t)
enjoys �dep(T ) = (log T )2 [Lattimore ’17]e.g.

Distribution-dependent rate For all M > 0, for all problems in [0,M ], lim sup
T→∞

RT

Φdep(T )
< +∞



Lower bound for adaptation to the range
Theorem: Lower bound for range adaptation (H, Stoltz 2020)

For any algorithm enjoying rates �free(T ) and �dep(T )

�dep(T ) �free(T ) � T

The cost of distribution-free adaptation is hidden in distribution-dependent rates!

in particular, �free(T ) � O(
�

T ) � �dep(T ) � �(
�

T )

We get T� and T 1�� (for 1/2 < � < 1) by tuning the extra-exploration in Bandit AdaHedge



Adapting to the smoothness



Back to the river: continuous bandits

Yt
<latexit sha1_base64="4XVDCv8/d6zjTzteA5h6ncQZERQ="></latexit>

Xt

For t = 1, . . . , T, . . . :

– pick Xt � X
– receive and observe Yt � �Xt given Xt

X = [0, 1] Unknown payo� distributions (�x , x � X ) Mean-payo� function f : x �� E(�x)

We need assumptions

Goal

RT = T max
x�X

f(x) � E
�

T�

t=1

f(Xt)

�



Assumptions

[Agrawal 1995], [Kleinberg ’05], [Auer, Ortner, Szepesvári, ’07], [Bubeck, Munos, Stoltz, Szepesvári ’11]

[Bubeck, Stoltz, Yu ’11], [Kleinberg, Slivkins, Upfal, ’13], [Bull ’15]

Rewards are bounded in [0, 1]1.

2. f(x�) � f(x) � L |x� � x|�Mean-payo� function is “(L, �)-Hölder around its max”

Lots of similar and/or more refined assumptions in the literature

Related problems: bandit optimization/simple regret, maximum estimation, maximum location

estimate max f find �X
s.t. �X � x�

find �X
s.t. f( �X) � max f

[Muller 1989][Bartlett, Gabillon, Valko ’19]
[Valko, Carpentier, Munos ’13]

[Lepski 1994][Shang, Kauffman, Valko ’19]



A = [0, 1]

0

1

X = [0, 1]

Discretization

Play only at these spots, using a K-armed bandit algorithm

Beforehand, pick a finite number of spots

Back to a finite-armed bandit problem 

[Kleinberg ‘05]



Bounding the regret of discretization

by tuning K = K�(�) appropriatelyRT � c L1/(2�+1)T (�+1)/(2�+1)

RT = T

�
max f � max

1�i�K
f(xi)

�
+ max

1�i�K
f(xi) � E

�
T�

t=1

f(Xt)

�

c
�

KT� +T
L

K�

Proof:



Impossibility of (full) adaptation

Answer: we cannot 

Model selection? Cross-validation? Question: how can we obtain adaptive rates �(�) =
� + 1

2� + 1
?

sup
f �-Hölder

RT � c T �(�) for all �

An algorithm achieves adaptive rates � : R+ � [1/2, 1] if
Adaptive rates

… Exploration is costly

Theorem: Consequence of [Locatelli and Carpentier ’18]

If a rate function � is achieved by some algorithm, then

there exists m � [1/2, 1 ] s.t �(�) � max
�
m, 1 � m

�

� + 1

�



Lower bound(s) on the adaptive rates

if RT � c T �(�)

then � is lower bounded
by one of these rates

Still, can we reach these rates?



A bird’s eye view of past approaches

Zooming algorithm [Kleinberg, Upfal, Slivkins ’13]

HOO [Bubeck, Munos, Stoltz, Szepesvári ’11]

Adaptive-treed bandits [Bull ’15]

Zoom in on promising regions

Select the promising regions using the knowledge of the regularity

SR [Locatelli, Carpentier ’18]

e.g.



An optimally adaptive algorithm

but remember what you played before

…then ZOOM OUT.
start over with a coarser discretization

Discrete algorithm choosing between: An extra-action: playing at random 

among actions selected in the past epochK actions from the discretization

Basic idea 

Assume the worst…
start with a very fine discretization 

but not for too long



Guarantees
Algorithm : Memorize, Discretize, Zoom out 

Set Ki � 2�i
�

T ; Di � 2i
�

T

For epochs 1 to � log T

– For Di rounds, run a Ki-discretization with memory of previous plays

with no assumption on � and L

Theorem: Medzo regret bound [H, 2019]

For any (L, �)-Hölder function, without the knowledge of L or �,

RT � �O
�
L1/(�+1)T (�+2)/(2�+2)

�



Conclusion

Adaptation leads to interesting questions with surprising phenomena

Achieving adaptation requires new algorithmic ideas

Ultimately important in practice/getting rid of hyperparameter tuning

Bandits are fun!



Local perspectives

KL-UCB: Unifying notion of optimality in bandits?


Range: 

- Minimax and optimal distribution-dependent rates for adapting to the lower end of the range

- Getting rid of the 


Continuous bandits:

- Including other types of regularity

- Is there a principled look at Medzo that could be applied elsewhere?

- What do we need to know to be able adapt at the usual rates [Locatelli Carpentier ’18]?

�
log K



General perpectives

- Related problem ‘Model selection in contextual multi-armed bandits’

[Foster et al. ’19], [Chatterji et al  ’19], [Foster et al. COLT open problem ’20]

- What about non IID payoffs? [Zimmert and Seldin ’19]

[Agrawal et al. ’17], [Pacchiano et al. ’20], results are very specific

-Dream general approach:

Can we combine a family of bandit algorithms and obtain one that is as good as the best?

Observe context Ct � {1, . . . , S} then choose At � {1, . . . , K}
A model � is a set of policiesA policy is mapping from context to action � : C � A

Di�cult: getting the same result with a sequence of nested models

Easy (Exp4): RT (Best � � �) � c
�

KT log |�|
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Bonus: diversity-preserving bandits
with Sébastien Gerchinovitz, Jean-Michel Loubes and Gilles Stoltz

Play a probability distribution pt over {1, 2, 3}

Observe At � pt, and Yt � �At

Require that p1,t, p2,t � 0.3 (for example)

RT = T max
p available

K�

a=1

paµa � E
�

T�

t=1

Yt

�

Bounded regret is possible � the best p is in the (relative) interior of the simplex

(0, 0, 1)

(1, 0, 0) (0, 1, 0)



Thank you Gilles and Pascal!

Thank you everyone!


