

Polynomial Cost of Adaptation for X-Armed Bandits

Hédi Hadiji, Laboratoire de Mathématiques d'Orsay, Université Paris-Sud

Département de Mathématiques d'Orsay

Introduction

X-armed bandits are a generalization of the K-armed bandit problem, in which the action set is continuous. [Locatelli and Carpentier '18] recently uncovered obstacles to designing algorithms that adapt to the regularity of the mean-payoff function.

We revisit the lower bound and provide an algorithm that is as adaptive as possible.

X-Armed Bandits

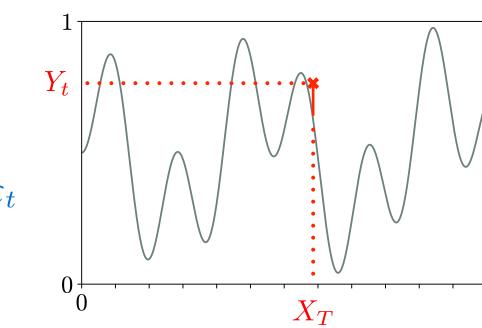
Arm space $\,\mathcal{X} = [0,1]\,\,$ Unknown mean-payoff function $f \in [0,1]^{\mathcal{X}}$

For t = 1, ..., T:

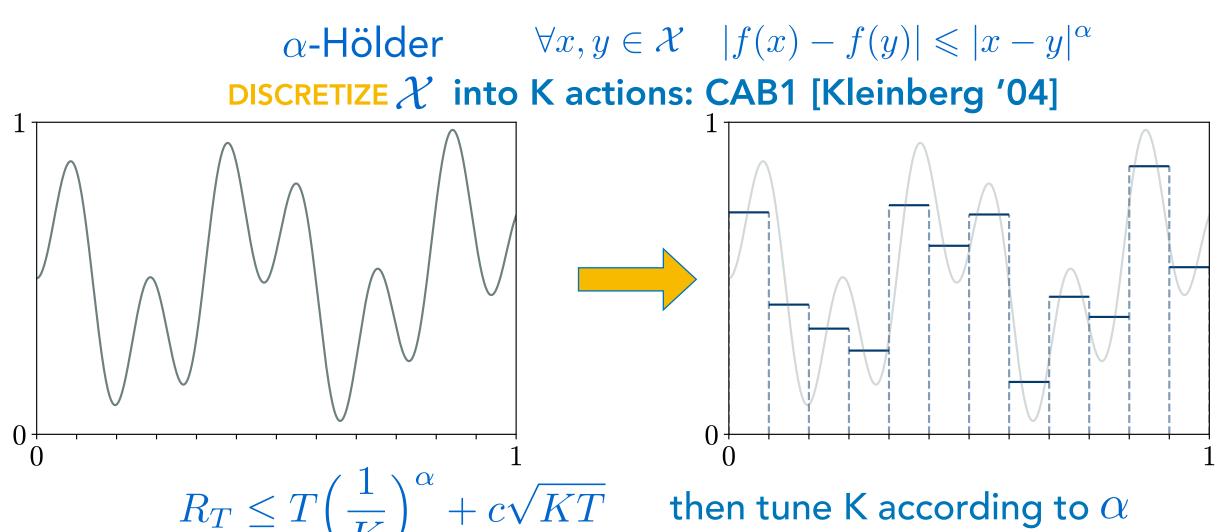
- pick $X_t \in \mathcal{X}$

- observe and receive reward $Y_t = f(X_t) + \varepsilon_t$

Regret: $R_T = T \max_{x \in \mathcal{X}} f(x) - \mathbb{E}\left[\sum_{t=1}^T f(X_t)\right]$



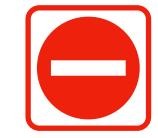
Known smoothness? Discretize



 $\min_{\text{alg. }f}\max_{\alpha\text{-H\"{o}lder}}R_T symp T^{(\alpha+1)/(2\alpha+1)}$

Unknown smoothness?

Dream is full adaptation at no cost: getting the same guarantees as if smoothness was known Model selection? Cross-validation? Exploration is costly!



Theorem: No full adaptation [Locatelli and Carpentier '18]

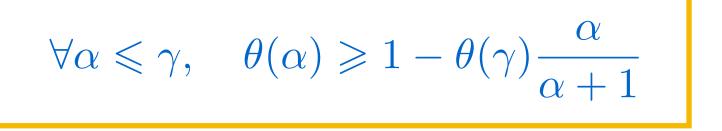
If $\alpha \leqslant \gamma$ and $\max_{f \ \gamma\text{-H\"{o}lder}} R_T \leqslant B$ then $\max_{f \ \alpha\text{-H\"{o}lder}} R_T \geqslant c \, T B^{-\alpha/(\alpha+1)}$

See next column for why this prevents adaptation

A closer look at the lower bound

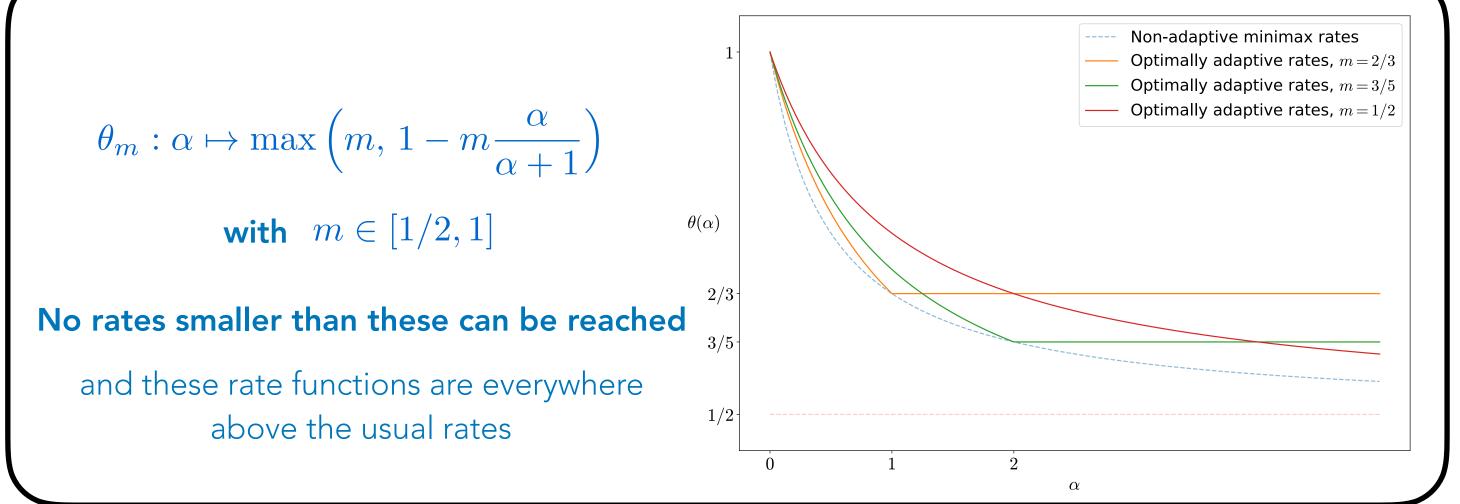
$$R_T(lpha) := \sup_{f \; lpha ext{-H\"{o}lder}} R_T$$
 Assume $orall lpha, T$ $R_T(lpha) \leqslant c \, T^{ heta(lpha)}$

Lower bound yields: $R_T(\alpha) \geqslant c \, T R_T(\gamma)^{-\alpha/(\alpha+1)}$ when $\alpha \leqslant \gamma$



(

Minimal solutions to (★)



Matching the lower bound(s): 3 ingredients

Usual methods zoom in on promising regions, in a way that crucially depends on the regularity

e.g. - Bubeck, Munos, Stoltz, Szepesvári '11"X-Armed Bandits"

- Kleinberg, Slivkins, Upfal '11 "Bandits in metric spaces"
- Bull '15 "Adaptive-treed bandits", and many more (see full paper)

We do the opposite and zoom out

<u>Discretize</u>: Split the time budget into epochs; use a new discretization in each epoch.

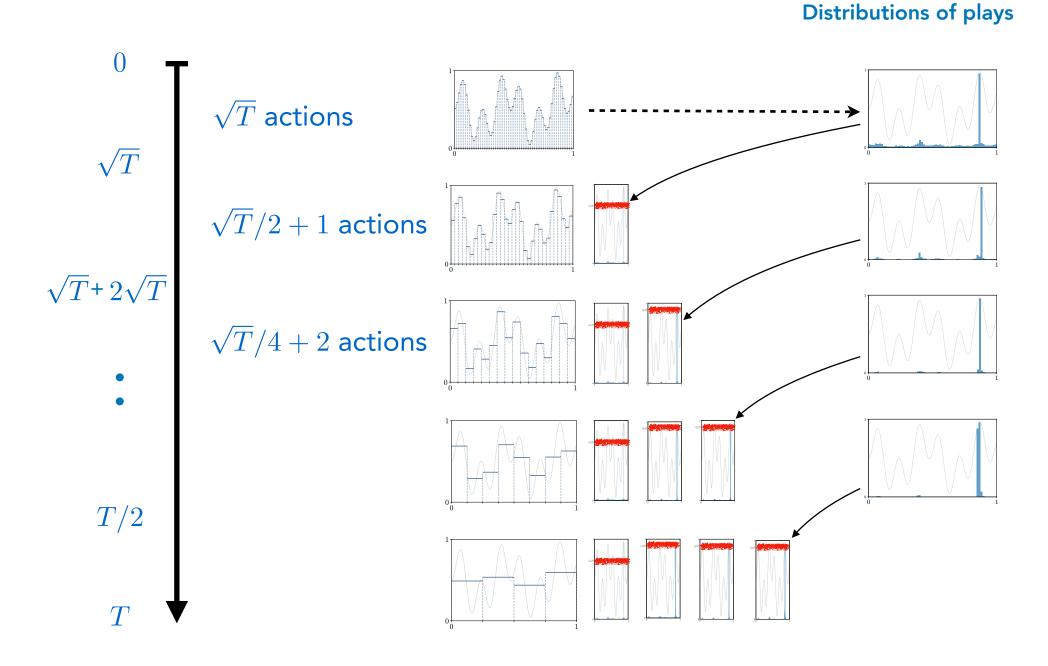
Zoom Out: At each new epoch, reset the algorithm and start over a new regime of length double the previous one and with half fewer discrete arms.

Memorize past actions: Allow the discrete algorithm to pick an action uniformly among the actions played in each of the past epochs.

Algorithm: MeDZO

Set $K_i \approx 2^{-i} \sqrt{T}$; $T_i \approx 2^i \sqrt{T}$ For epochs 1 to $p \approx \log \sqrt{T}$

- For T_i rounds, run CAB1 with K_i -discretization and the memorized actions



Regret analysis

Denote by R(j) the regret suffered during j-th epoch

After epoch j, whenever the discrete algorithm picks the memorized action from epoch j, the instantaneous regret suffered is smaller than

$$\max f - \frac{1}{T_j} \mathbb{E} \left[\sum_{\text{epoch } j} f(X_t) \right] = \frac{R(j)}{T_j}$$

:= M(j), the expected payoff of action memorized from epoch j

Then by the guarantees of CAB1, for j < i $R(i) \le T_i \Big(\max f - M(j) \Big) + c \sqrt{T_i K_i}$

Even though we zoom out, the approximation error from the discretization does not grow too fast, thanks to the memorized actions.

$$R(i) \leqslant T_i \frac{R(j)}{T_j} + c\sqrt{T}$$
 for all $j < i$

Sum over i and use the Hölder property for the early discretizations to get the regret bound

Replace \sqrt{T} by T^m to obtain any rate among the θ_m 's

Without the knowledge of α $R_T \leqslant c_T \max \left(T^m, T^{1-m\alpha/(\alpha+1)}\right)$

Additional References

Bandits

- Auer et. al '02 "Using confidence bounds for exploration-exploitation tradeoffs"

Adaptativity for simple regret/Optimisation:

- Grill, Valko, Munos '15 "Black-box optimization of noisy functions with unknown smoothness"
- Bartlett, Gabillon, Valko '19 "A simple parameter-free and adaptive approach to optimization under a minimal local smoothness assumption"