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Introduction

X-armed bandits are a generalization of the K-armed bandit problem, in which the action set is
continuous. [Locatelli and Carpentier 18] recently uncovered obstacles to designing
algorithms that adapt to the regularity of the mean-payoff function.

We revisit the lower bound and provide an algorithm that is
as adaptive as possible.

X-Armed Bandits
Arm space X = [O, 1] Unknown mean-payoff function | € [O, 1]X

Fort=1,...,T:

- pick X; e X

— observe and receive reward Y; = f(X;) + &

reX

T
Regret: Ry =T max f(z) — E[Z f(Xt)]
t=1

Known smoothness? Discretize

a-Holder v,y e X |f(z)— f(y)| < |z —yl*
X into K actions: fIAB1 [Kleinberg '04]
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Unknown smoothness?

Dream is full adaptation at no cost: getting the same guarantees as if smoothness was known
Model selection? Cross-validation? Exploration is costly!

Theorem : No full adaptation [Locatelli and Carpentier ‘18]

If a<vy and max Ry <B then max Ry >c¢TB %/(etD)
f y-Holder f a-Holder

See next column for why this prevents adaptation
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Polynomial Cost of Adaptation for X-Armed Bandits

A closer look at the lower bound

Rr(a):= sup Rt Assume Vo, T RT(Q)gcTQ(a)
f a-Holder

Lower bound yields: Ry («) > cTRT(’y)_O‘/(O‘Jrl) when « < v
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Minimal solutions to (¥)
Non-adaptive minimax rates

1 —— Optimally adaptive rates, m=2/3

—— Optimally adaptive rates, m=3/5

o —— Optimally adaptive rates, m=1/2

Hm:ow%max(m,l—m )
a—+ 1
with m € [1/2,1] ¥le)

2/3

No rates smaller than these can be reached ”

and these rate functions are everywhere

1/21
above the usual rates /

(0}

Matching the lower bound(s): 3 ingredients
Usual methods zoom in on promising regions,

in a way that crucially depends on the regularity

e.g. - Bubeck, Munos, Stoltz, Szepesvari ‘11" X-Armed Bandits”
- Kleinberg, Slivkins, Upfal ‘11 “Bandits in metric spaces”
- Bull 15 “Adaptive-treed bandits”, and many more (see full paper)

We do the opposite and zoom out
Discretize: Split the time budget into epochs; use a new discretization in each epoch.

Zoom Out: At each new epoch, reset the algorithm and start over a new regime of length

double the previous one and with half fewer discrete arms.

Memorize past actions: Allow the discrete algorithm to pick an action uniformly among
the actions played in each of the past epochs.

Algorithm: MeDZO

For epochs 1 to p ~ log /T
- For T; rounds, run CAB1 with K-discretization and the memorized actions
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Regret analysis
Denote by R(j) the regret suffered during j-th epoch

After epoch j, whenever the discrete algorithm picks the memorized action
from epoch j, the instantaneous regret suffered is smaller than

max f — TLE{ > f(Xt)} _ RU)

T
J epoch j J

) - 7

—_~
:= M(j), the expected payoff of action memorized from epoch j

Then by the guarantees of CAB1, forj<i R(i) < Ti(maxf — M(j)) + /T K;

Even though we zoom out, the approximation error from the discretization
does not grow too fast, thanks to the memorized actions.

J
Sum over i and use the Holder property for the early discretizations to get the regret bound

R(i) < TZ-RT(]) +evVT forall j < i

Replace /T by 7™ to obtain any rate among the 6,,,'s

Without the knowledge of @ Rp < ¢ max (T’m7 Tl—ma/(a+1))

Additional References
Bandits:
- Auer et. al '02 “Using confidence bounds for exploration-exploitation tradeoffs”
Adaptativity for simple regret/Optimisation:
- Grill, Valko, Munos "15 “Black-box optimization of noisy functions with unknown smoothness”

- Bartlett, Gabillon, Valko 19 “A simple parameter-free and adaptive approach to optimization
under a minimal local smoothness assumption”



