cs

Deep Learning
Class 5: Training Neural Networks

Hédi Hadiji

Université Paris-Saclay - CentraleSupelec
hedi.hadiji@lI2s.centralesupelec.fr

November 2025

1/32



cs

Summary up to now

Table of Contents

Summary up to now

2/32



cs

Summary up to now

Up to Now

We have seen how to train a neural network on a training dataset by minimizing
a given loss function.

True objective is to achieve a low population loss, i.e., to generalize well to
unseen data.

So far, our recipe has been simple:
Choose a model, train it with SGD.

In practice, things are not that easy.
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Training Problems

Training issues

Problem 1: Optimisation of deep nets

There are obstacles to attaining a small training loss
m Vanishing gradients: gradients with respect to first layers are tiny
m Loss landscapes: saddle points and local minima

5/32



cs

Training Problems

Underfitting, Overfitting in ML

The textbook story:
® You want to do regression, i.e., fit a function to data points.
m Choose a parametric family of models, e.g. polynomials, with d
degrees of freedom.
m Take least-squares loss.
Then
m if d is too small: not expressive enough, model will underfit
m if d is too large: not expressive enough, model will overfit

Underfitting (Degree 1) Good Fit (Degree 5) Overfitting (Degree 15)

@ Training data L] @ Taining data °
== True function °
1.0 { — Model (deg=5)

Question: is this toy example relevant for real models and real data?
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Training Problems

Overfitting

Overfitting makes sense in the ideal setting described above, but is very
ill-defined in practice.

Neural networks work well in the over-parameterized regime: ImageNet
is ~ 1 000 000 images, Deep ResNets are up to ~ 60 000 000 parameters.

Problem 1: Learning with many parameters

How can we make highly overparameterized models generalize from low
train loss to low test loss?

Generic theoretical upper bounds on generalization error are larger
when the number of parameters is larger and we pick an ERM.

But we do not know if these bounds are tight, and we do not select just
any ERM: we use SGD + training techniques.

Some question whether overfitting exists at all. [see this blog series]

7/32


https://www.image-net.org/download.php
https://arxiv.org/abs/1512.03385
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Stabilisation for Optimization

Vanishing / Exploding Gradients

Due to the chain rule, gradients can vanish or explode in deep networks.
Recall gradients at layer ¢:

L—1

Ow, L= (0x,L)Ow, Xe = ( Ox, L HakakH)awp 1 Xe

k=t

If the Jacobians 0, k1 have small (resp. large) singular values, the
gradients will vanish (resp. explode) with depth.
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Residual Connections

Idea: To handle vanishing gradients. Let each layer learn a residual
function instead of a full transformation.

Residual connection
Given a layer F with weights W

Xet1 = Xe + F(xe; W)

Then
Ox, £ = (8X££) (Id + Ox, F)

Therefore even if activation lie in flat regions of the graph of F, the
gradients flow.

x
identity

Figure 2. Residual learning: a building block.
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Stabilisation for Optimization

Skip connections: lllustration

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
i p bl isons of

scheme is use between the two figures.

[Visualizing Loss Landscape]
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https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1712.09913

cs
Stabilisation for Optimization

Optimizers + Learning Rate Schedules

Momentum avoids saddle-points.

Momentum vs. SGD on an Anisotropic Loss Surface
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Stabilisation for Optimization

Adam

Adam uses momentum + adaptive learning rates.

input : y (Ir), 1, 8, (betas), 6 (params), £(6) (objective)
X (weight decay), amsgrad, mazimize, ¢ (epsilon)

initialize : mgy < 0 ( first moment), vy ¢ 0 (second moment), v§*** < 0

fort=1to ... do
if mazimize :
ge < —Vofi(6:1)
else
9 < Vofi(8i-1)
ifA#£0
9t < ge + A0y
me < Bimyy + (1— Bi)ge
v Byor + (1— Bo)g}
g = my/ (1 - B})
if amsgrad
o max(vy', vi)
v/ (1- B5)
else
T v/ (1-B3)
0; + 0,1 — ymz/ (VT + €)

return 6,

[pytorch doc]
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https://docs.pytorch.org/docs/stable/generated/torch.optim.Adam.html

cs

Stabilisation for Optimization

Learning Rate Schedules

Change the learning rate during training to improve convergence:
m Start with a large learning rate to make rapid progress.
m Decrease it over time to refine the solution.

Typical Learning Rate Schedulers in PyTorch

0.0010 4
0.0008 A
£ —— Constant
£ 0:00061 StepLR
? —— ExponentialLR
1= - .
& 0.0004 —— CosineAnnealingLR
3 —— OneCycleLR
0.0002 4
0.0000 +
T T T : . ; . . .
0 25 50 75 100 125 150 175 200
Step
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Stabilisation for Optimization

Another Ingredient: Correct Initialization

Initialization sets the starting point of optimization, and the scale at
which leaning will occur.

Two goals:
m Break symmetry between neurons.
®m Maintain the typical scale of activations and gradients across layers.

First observation: With zero-initialization, all neurons in a layer compute
the same output and receive the same gradient: no learning occurs
within a layer.
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Stabilisation for Optimization

Initialization Schemes

Goal: preserve the typical scale of activations and gradients across layers.
Random initialization of weights is standard:

m Independent, zero-mean weights.

m Variance depends on activation function and fan-in/out.

Two main schemes (both can be uniform or normal):
1

Xavier / Glorot:  Var(Wj) o« —————
fan_in + fan_out

He / Kaiming:  Var(Wj) L
fan_in

Use Xavier for tanh/sigmoid and He for ReLU-like activations.
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Stabilisation for Optimization

Variance Preservation Intuition

At a given layer,

dfanjn dfanin
Var((Wx); | x) = Var( > W,,,x,) = > Var(W) xZ ~ ||x|?
i=1 i=1

so the variance of activations is preserved layer to layer, and similarly for
backpropagated gradients (with the output dimension).

Remark: this variance is with respect to the randomness of initialization only, not
the stochasticity of the data. This ensures the typical scale of activations is preserved.

[see torch.nn.init] for exact constants and functions.
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https://pytorch.org/docs/stable/nn.init.html
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Stabilisation for Optimization

Normalization Layers

Goal: stabilize training and control scale of activations

Motivation:
m Deep networks suffer from drifting activation scales across layers.

m Normalization hard fixes the mean and variance, improving gradient
flow.

General form:
y:XfMﬂ
o(x)

where 1, o are computed over specific dimensions and v, 3 are learnable
parameters restoring scale and shift.

Ov+p
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Stabilisation for Optimization

Types of Normalization

Mean and variance can be computed over different axes:
m BatchNorm: mean/var over batch and spatial dims.
m LayerNorm: over features within each sample.
m InstanceNorm: per sample, per channel.
m GroupNorm: per group of channels (robust to batch size).

Batch Norm

H,W

H,W

Instance Norm Group Norm

H,W
H,W

(Batch norm is most common in CNNs, LayerNorm in Transformers, GroupNorm
when you have semantically sound ways of grouping channels.)
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Batch Normalization intepretation

Historical justification: reduce internal covariate shift* by normalizing
layer inputs, and setting them to a standard location and scale.

* Internal covariate shift = distribution of layer inputs changes during
training as previous layers update. Think of a layer as trying to learn the
mapping from the input distribution to the output.

" \ ,éj/
/J 1™
J

Batch norm has a weird effect on the computation graph:

m Normalization depends on the entire mini-batch.

m Gradients backpropagate through the mean/variance computation.
[Recent work] questions the internal covariate shift explanation, and
argues benefits come from smoother optimization landscape.
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https://arxiv.org/abs/1805.11604
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Regularization

Explicit Regularization

Goal: penalize large or complex parameter values. (aka structural risk
minimization, control the capacity of the family of models we are
training.)

L2 penalty (weight decay):

r_ A 2
£ =c+ 5|

m Shrinks weights smoothly toward zero.
m Encourages small, distributed representations.
m Acts as a Gaussian prior on weights (Bayesian view) (loss is negative
log-posterior and training is maximum a posteriori ).
L1 penalty (Lasso):
L' =L+ 0]

m Promotes sparsity: many weights exactly zero.
m Can be for feature selection.
m Acts as a Laplace prior (spiky, heavy-tailed).
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Regularization

Regularization lllustration

w1

L2-norm

Wa

A)
‘ w1
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Regularization

Explicit Regularization in Optimizers

Weight decay:

m Implementation of L2 regularization inside optimizers:
0+ (1 —nA\)8—nVelL

m Especially in Adamw, the decay term is applied directly to parameters,
not to gradients : improves stability.
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Regularization

Dropout Principle
Goal: prevent co-adaptation between neurons and improve generalization
through noise injection.
Mechanism:
m During training, each activation is randomly zeroed:
hj < mjh;, m; ~ Bernoulli(p)
where p is the probability of keeping a unit.
m At test time, all units are used but scaled by p:
hi =ph;
ensuring the same expected activation.

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right
An roduced by applying dropout to the network on the lft
A

astava et al., JMLR 2014
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https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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Regularization

Dropout: Effects and Interpretation
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(a) Standard Neural Net

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right
An example of a thinned net produced by applying dropout to the network on the left

(traceed nnite have heen dranned

Multiple interpretations of dropout:
m Implicitly trains ensemble of subnetworks that share weights.
m Acts as an explicit regularizer, reducing overfitting.

m Dropout introduces stochasticity that forces robustness: each
neuron must perform well under random thinning of its inputs.
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Regularization

Early Stopping

Goal: prevent overfitting by halting training when validation performance
stops improving.
Mechanism:

m Split data into training and validation sets.

® Monitor the validation loss L, and stop when L, increases.

Effect:

m Limits effective model capacity (not all weights can be reached within a
limited number of steps).

®m Reduces risk of memorizing noise in the training set.

074 | — train
test

0 500 1000 1500 2000 2500 3000 3500 4000
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Regularization

Data Augmentation

m Goal: artificially enlarge the training set by applying label-preserving
transformations.

m Encourages invariance (e.g. to rotations, translations) and reduces
overfitting.

m Common for vision and audio tasks; can also be used for text and
time series.

Typical augmentations for images

m Geometric: rotations, flips, crops, translations, elastic deformations
m Photometric: brightness, contrast, hue, noise injection, blurring

No information injected: best to think of it as a regularization method

that increases robustness and generalization, or that we teach the model
invariances that we want it to have.
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Data Augmentation

[A paper with data augmentation]
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https://dl.acm.org/doi/10.1145/3388176.3388179
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Regularization

Implicit Regularization

Observation: the model generalizes well even without explicit penalties
because the training dynamics themselves favor simple solutions.
Sources of implicit regularization:

m GD + loss implicit bias GD + square loss favor small weights
solutions when there are multiple global minimizers in
overparameterized models.

m Stochasticity of SGD: noise in gradients might act as regularization
(small batches sometimes outperform large ones).

m Everything we said before Eearly stopping, normalization,
initialization, data augmentation.
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Conclusion

Conclusion

Many tricks and techniques exist to stabilize and improve training of deep
networks.

m Initialization and normalization layers improve gradient flow.
m Regularization techniques (explicit and implicit) help generalization.

m Data augmentation is a powerful way to increase effective training
data size.

Many more in practice
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