Deep Learning Class II: Convolutional Neural Networks

Hédi Hadiji

Université Paris-Saclay - CentraleSupelec hedi.hadiji@l2s.centralesupelec.fr

October, 2025

Table of Contents

- 1 Reminder of Last Time and Plan for the Day
- 2 Reminder: Definitions
- 3 Convolution: introduction
- 4 Convolution Layers
- 5 2D convolutions
- 6 Convolutional Neural Networks

Last time

Last time:

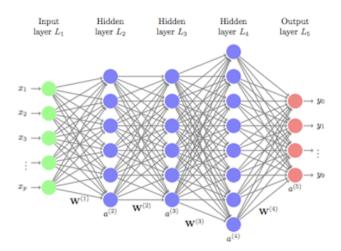
- Supervised learning
- Neural nets
- Multi-Layer Perceptron + Backpropagation

Today: Convolutional Neural Networks

Table of Contents

- 1 Reminder of Last Time and Plan for the Day
- 2 Reminder: Definitions
- 3 Convolution: introduction
- 4 Convolution Layers
- 5 2D convolutions
- 6 Convolutional Neural Networks

Recall: MLP



Softmax

■ Given logits $z \in \mathbb{R}^K$ the softmax converts them to a probability vector

$$\operatorname{softmax}(z)_j = \frac{\exp(z_j)}{\sum_{i=1}^K \exp(z_i)}.$$

■ Common loss: cross-entropy with one-hot label *y*,

$$\mathcal{L}(z,y) = -\sum_{j} y_{j} \log \operatorname{softmax}(z)_{j},$$

(libraries implement it directly as a function of logits)

■ Gradient (softmax + cross-entropy, compact form):

$$\frac{\partial \mathcal{L}}{\partial z} = p - y, \qquad p = \text{softmax}(z),$$

and Jacobian entries $\partial p_i/\partial z_i = p_i(\delta_{ij} - p_i)$.

Recall: Backprop

- Forward: compute result and intermediate activations
- Backward: propagate gradients going from deep to shallow layers.

Reminder: Definitions

Backpropagation Algorithm

Algorithm 1 Backpropagation for an *L*-layer network

- 1: **Given:** input x, target y, parameters $\{W_{\ell}, b_{\ell}\}_{\ell=1}^{L}$
- 2: Forward pass:
- 3: for $\ell = 1 \rightarrow L$ do
- 4: $z_{\ell} \leftarrow W_{\ell} a_{\ell-1} + b_{\ell}$
- 5: $a_{\ell} \leftarrow \sigma_{\ell}(z_{\ell})$
- 6: Compute loss $J = \mathcal{L}(a_L, y)$
- 7: Backward pass:
- 8: $\delta_L \leftarrow \nabla_{a_L} \mathcal{L}(a_L, y) \odot \sigma_L'(z_L)$
- 9: for $\ell = L 1$ down to 1 do
- 10: $\delta_{\ell} \leftarrow (W_{\ell+1}^{\top} \delta_{\ell+1}) \odot \sigma_{\ell}'(z_{\ell})$
- 11: Gradients:
- 12: for $\ell = 1 \rightarrow L$ do
- 13: $\nabla_{W_{\ell}} \mathbf{J} \leftarrow \delta_{\ell} \mathbf{a}_{\ell-1}^{\top}$
- 14: $\nabla_{b_\ell} J \leftarrow \delta_\ell$

Complexity of computations

- Consider an MLP with L layers. Layer I maps $n_{l-1} \rightarrow n_l$ (weight matrix W_l of size $n_l \times n_{l-1}$).
- Forward pass cost (per input):

$$T_{\mathsf{fwd}} = \Theta\Big(\sum_{l=1}^{L} n_{l-1} n_{l}\Big)$$

(matrix-vector products + activation costs).

- Backward pass cost (per input): of the same order computing layer deltas and weight gradients involves similar matrix products: often quoted as roughly 2-3 times the forward cost.
- Memory: need to store activations for each layer during forward for use in backprop:

$$M_{\text{act}} = \Theta\left(\sum_{l=0}^{L} n_l\right)$$

plus parameter storage $\Theta(\sum_{l} n_{l-1} n_{l})$.

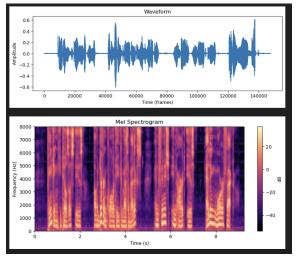
Table of Contents

- 1 Reminder of Last Time and Plan for the Day
- 2 Reminder: Definitions
- 3 Convolution: introduction
- 4 Convolution Layers
- 5 2D convolutions
- 6 Convolutional Neural Networks

Convolution: introduction

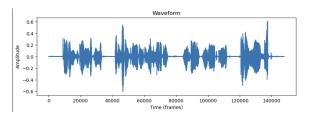
Question: What if your task has some invariance?

Example: Speech signal



Task: predict whether the word hello is pronounced

What happens when you input this in an MLP?



Input Dimension: 150 000, can be downsampled to e.g. 15 000. Number of parameters is at least 15 000 \times hidden dimension, much more if multiple layers.

Information for task is located in time.

- Not data efficient: network will need to see interesting data at every location until all weights get updated meaningfully
- A better way would be to find a way to use the shift invariance of the task in the model architecture.

Image processing

Same with images in 2D.

We build our understanding of what is in a image by through local features that we combine together.

Idea: instead of fully-connected layers, apply a local operation.

13/35

Table of Contents

- 1 Reminder of Last Time and Plan for the Day
- 2 Reminder: Definitions
- 3 Convolution: introduction
- 4 Convolution Layers
- 5 2D convolutions
- 6 Convolutional Neural Networks

Formal Definition of Convolution

For an input signal $x = (x_t)_{t \in [T]}$ and kernel $(w_k)_{k \in [K]}$:

$$(x * w)_t = \sum_{k=0}^{K-1} w_k x_{t+k}$$

- K is called the kernel size
- Convolution is a product computed at every shift
- Called 'cross-correlation' in signal processing (not true convolution: convolution would flip the kernel)

Example: Simple Convolution

Input:
$$[1,2,3,4,5]$$
 Kernel: $[1,0,-1]$
$$y[0] = 1 \cdot 1 + 2 \cdot 0 + 3 \cdot (-1) = -2$$

$$y[1] = 2 \cdot 1 + 3 \cdot 0 + 4 \cdot (-1) = -2$$

$$y[2] = 3 \cdot 1 + 4 \cdot 0 + 5 \cdot (-1) = -2$$

Output: [-2, -2, -2]

Output is:

- Positive if sequence is incresing
- Negative if sequence is decreasing
- ⇒ This kernel detects decreasing transitions (like a 1D edge detector).

Convolution Layers

Visualizing the Operation

■ Multiply elementwise \rightarrow sum \rightarrow slide one step \rightarrow repeat.

See this demo

Stride and Padding

Extra-parameters at implementation

- **Stride** = how many steps we slide the kernel each time.
 - Stride 1 : dense output
 - Stride 2 : downsampled output

Stride reduces the size of the output, at the cost of losing information

- **Padding** = add zeros around edges to control output length.
 - "valid" = no padding
 - "same" = output length = input length

Padding affects how we look at the borders of the image.

Multi-Channel Conv1D

Instead of sequences of numbers, we can look at sequences of vectors: each coordinate is a channel.

We can apply a filter that maps every time index vector to another vector instead.

Input can have multiple channels (e.g. stereo sound, multiple sensors, ...) Each x_t is itself a vector in $\mathbb{R}^{N_{\text{channels}}}$.

Each time-component of the kernel is itself a vector, so full kernel is a matrix $w \in \mathbb{R}^{K,N_{\text{channels}}}$

$$(x*w)_t = \sum_{k=0}^{K-1} w_k \cdot x_{t+k}$$

- Each kernel spans all input channels.
- Output is still 1-dimensional

A kernel captures interactions locally in time, but cross-channel. Finally, we can also have multiple output channels. Then the kernel \boldsymbol{w} is represented as tensor.

Why Use Conv1D?

- Captures local temporal or spatial dependencies.
- Parameter efficient: same kernel reused across positions.
- Translation invariant: pattern recognized anywhere in input.
- Common in:
 - Audio / waveform processing
 - Time series forecasting
 - NLP on embeddings
 - Reinforcement learning (temporal signals)

Strength of deep learning: principled way of incorporating knowledge about the task without hardcoding features.

Minimal NumPy Implementation

```
import numpy as np

def convld(x, w, stride=1):
    n, k = len(x), len(w)
    out_len = (n - k) // stride + 1
    y = np.zeros(out_len)
    for i in range(out_len):
        start = i * stride
        y[i] = np.sum(x[start:start+k] * w)
    return y
```

Table of Contents

- 1 Reminder of Last Time and Plan for the Day
- 2 Reminder: Definitions
- 3 Convolution: introduction
- 4 Convolution Layers
- 5 2D convolutions
- 6 Convolutional Neural Networks

Generalization to Conv2D

$$(w * x)_{i,j} = \sum_{m,n} w_{m,n} \cdot x_{i+m,j+n}$$

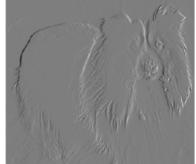
■ Same concept, just over two spatial axes (height, width)

Question

What happens if you apply the kernel [-1, 1] to this image:

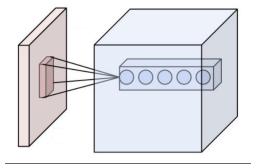
2D Kernels

Applying the kernel [-1, 1]



Detect vertical edges. Source: Goodfellow, Bengio, Courville.

Images as Blocks



With channels, we can see an image as a 3D block. And convolutions as (linear) mappings between 3D blocks that act only locally on the first two dimensions.

Demo Visualization

See this animation

- Convolution "scans" for features by applying the same local rule everywhere.
- A neural network then attempts to learn the correct filter for the task.

Table of Contents

- 1 Reminder of Last Time and Plan for the Day
- 2 Reminder: Definitions
- 3 Convolution: introduction
- 4 Convolution Layers
- 5 2D convolutions
- 6 Convolutional Neural Networks

Convolutions by themselves are not expressive enough

Why?

$$X \mapsto (W * X)_{i,j} = \sum_{m,n} W_{m,n} \cdot X_{i+m,j+n}$$

Second Ingredient: Non-linearity

Add a ReLU.

Third Ingredient: Pooling Layers

Motivation:

Convolutional Neural Networks

- Reduce the spatial size of feature maps (width and height)
- Preserve important features while reducing redundancy
- Make the network more robust to small translations and noise

How it works:

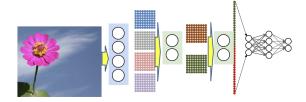
- Divide each feature map into small regions (e.g. 2×2)
- Apply an aggregation function in each region:
 - Max pooling: take the maximum value
 - Average pooling: take the mean value

Remark:

 Pooling is not so favored anymore in modern archicture besides very light-weight settings: downsampling by using strides is better in practice.

Learning Features and Hierarchical Learning

Apply a convolutional neural network:

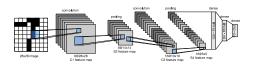


Flatten output then put in an MLP (aka dense layers, aka fully-connected layers) for a classification task.

Convolutional Neural Networks

Historic(al) architectures

LeNet (1998): Hand-written digit recognition



Alexnet (2012): Breakthrough on image classification

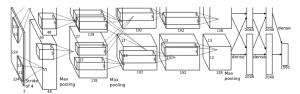


Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Learned features

We can plot the weights of the first layer in a trained network:

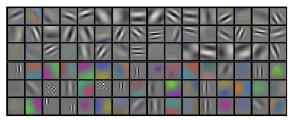


Figure 3: 96 convolutional kernels of size $11 \times 11 \times 3$ learned by the first convolutional layer on the $224 \times 224 \times 3$ input images. The top 48 kernels were learned on GPU 1 while the bottom 48 kernels were learned on GPU 2. See Section 6.1 for details.

In TP

- Basics of pytorch
- Implement backprop