
DL

Deep Learning
Class II: Convolutional Neural Networks

Hédi Hadiji

Université Paris-Saclay - CentraleSupelec
hedi.hadiji@l2s.centralesupelec.fr

October, 2025

1 / 35

DL

Reminder of Last Time and Plan for the Day

Table of Contents

1 Reminder of Last Time and Plan for the Day

2 Reminder: Definitions

3 Convolution: introduction

4 Convolution Layers

5 2D convolutions

6 Convolutional Neural Networks

2 / 35

DL

Reminder of Last Time and Plan for the Day

Last time

Last time:
Supervised learning
Neural nets
Multi-Layer Perceptron + Backpropagation

Today: Convolutional Neural Networks

3 / 35

DL

Reminder: Definitions

Table of Contents

1 Reminder of Last Time and Plan for the Day

2 Reminder: Definitions

3 Convolution: introduction

4 Convolution Layers

5 2D convolutions

6 Convolutional Neural Networks

4 / 35

DL

Reminder: Definitions

Recall: MLP

5 / 35

DL

Reminder: Definitions

Softmax

Given logits z ∈ RK the softmax converts them to a probability vector

softmax(z)j =
exp(zj)∑K
i=1 exp(zi)

.

Common loss: cross-entropy with one-hot label y ,

L(z, y) = −
∑

j

yj log softmax(z)j ,

(libraries implement it directly as a function of logits)
Gradient (softmax + cross-entropy, compact form):

∂L
∂z

= p − y , p = softmax(z),

and Jacobian entries ∂pi/∂zj = pi(δij − pj).

6 / 35

DL

Reminder: Definitions

Recall: Backprop

Forward: compute result and intermediate activations
Backward: propagate gradients going from deep to shallow layers.

7 / 35

DL

Reminder: Definitions

Backpropagation Algorithm

Algorithm 1 Backpropagation for an L-layer network
1: Given: input x , target y , parameters {Wℓ, bℓ}L

ℓ=1
2: Forward pass:
3: for ℓ = 1→ L do
4: zℓ ← Wℓaℓ−1 + bℓ

5: aℓ ← σℓ(zℓ)

6: Compute loss J = L(aL, y)

7: Backward pass:
8: δL ← ∇aLL(aL, y)⊙ σ′

L(zL)
9: for ℓ = L− 1 down to 1 do

10: δℓ ← (W⊤
ℓ+1δℓ+1)⊙ σ′

ℓ(zℓ)

11: Gradients:
12: for ℓ = 1→ L do
13: ∇Wℓ

J ← δℓa⊤
ℓ−1

14: ∇bℓJ ← δℓ

8 / 35

DL

Reminder: Definitions

Complexity of computations

Consider an MLP with L layers. Layer l maps nl−1 → nl (weight matrix
Wl of size nl × nl−1).
Forward pass cost (per input):

Tfwd = Θ
(L∑

l=1

nl−1nl

)
(matrix-vector products + activation costs).
Backward pass cost (per input): of the same order — computing
layer deltas and weight gradients involves similar matrix products:
often quoted as roughly 2-3 times the forward cost.
Memory: need to store activations for each layer during forward for
use in backprop:

Mact = Θ
(L∑

l=0

nl

)
plus parameter storage Θ(

∑
l nl−1nl).

9 / 35

DL

Convolution: introduction

Table of Contents

1 Reminder of Last Time and Plan for the Day

2 Reminder: Definitions

3 Convolution: introduction

4 Convolution Layers

5 2D convolutions

6 Convolutional Neural Networks

10 / 35

DL

Convolution: introduction

Question: What if your task has some invariance?

Example: Speech signal

Task: predict whether the word hello is pronounced 11 / 35

DL

Convolution: introduction

What happens when you input this in an MLP?

Input Dimension: 150 000, can be downsampled to e.g. 15 000. Number
of parameters is at least 15 000 × hidden dimension, much more if
multiple layers.
Information for task is located in time.

Not data efficient: network will need to see interesting data at every
location until all weights get updated meaningfully
A better way would be to find a way to use the shift invariance of the
task in the model architecture.

12 / 35

DL

Convolution: introduction

Image processing

Same with images in 2D.

We build our understanding of what is in a image by through local
features that we combine together.
Idea: instead of fully-connected layers, apply a local operation.

13 / 35

DL

Convolution Layers

Table of Contents

1 Reminder of Last Time and Plan for the Day

2 Reminder: Definitions

3 Convolution: introduction

4 Convolution Layers

5 2D convolutions

6 Convolutional Neural Networks

14 / 35

DL

Convolution Layers

Formal Definition of Convolution

For an input signal x = (xt)t∈[T] and kernel (wk)k∈[K]:

(x ∗ w)t =
K−1∑
k=0

wk xt+k

K is called the kernel size
Convolution is a product computed at every shift
Called ’cross-correlation’ in signal processing (not true convolution:
convolution would flip the kernel)

15 / 35

DL

Convolution Layers

Example: Simple Convolution

Input: [1, 2, 3, 4, 5] Kernel: [1, 0,−1]

y [0] = 1 · 1 + 2 · 0 + 3 · (−1) = −2

y [1] = 2 · 1 + 3 · 0 + 4 · (−1) = −2

y [2] = 3 · 1 + 4 · 0 + 5 · (−1) = −2

Output: [−2,−2,−2]

Output is:
Positive if sequence is incresing
Negative if sequence is decreasing

⇒ This kernel detects decreasing transitions (like a 1D edge detector).

16 / 35

DL

Convolution Layers

Visualizing the Operation

Multiply elementwise→ sum→ slide one step→ repeat.
See this demo

17 / 35

DL

Convolution Layers

Stride and Padding

Extra-parameters at implementation
Stride = how many steps we slide the kernel each time.

Stride 1 : dense output
Stride 2 : downsampled output

Stride reduces the size of the output, at the cost of losing information
Padding = add zeros around edges to control output length.

”valid” = no padding
”same” = output length = input length

Padding affects how we look at the borders of the image.

18 / 35

DL

Convolution Layers

Multi-Channel Conv1D

Instead of sequences of numbers, we can look at sequences of vectors:
each coordinate is a channel.
We can apply a filter that maps every time index vector to another vector
instead.
Input can have multiple channels (e.g. stereo sound, multiple sensors, . . .)
Each xt is itself a vector in RNchannels .
Each time-component of the kernel is itself a vector, so full kernel is a
matrix w ∈ RK ,Nchannels

(x ∗ w)t =
K−1∑
k=0

wk · xt+k

Each kernel spans all input channels.
Output is still 1-dimensional

A kernel captures interactions locally in time, but cross-channel.
Finally, we can also have multiple output channels. Then the kernel w is
represented as tensor.

19 / 35

DL

Convolution Layers

Why Use Conv1D?

Captures local temporal or spatial dependencies.
Parameter efficient: same kernel reused across positions.
Translation invariant: pattern recognized anywhere in input.
Common in:

Audio / waveform processing
Time series forecasting
NLP on embeddings
Reinforcement learning (temporal signals)

Strength of deep learning: principled way of incorporating knowledge
about the task without hardcoding features.

20 / 35

DL

Convolution Layers

Minimal NumPy Implementation

import numpy as np

def conv1d(x, w, stride=1):
n, k = len(x), len(w)
out_len = (n - k) // stride + 1
y = np.zeros(out_len)
for i in range(out_len):

start = i * stride
y[i] = np.sum(x[start:start+k] * w)

return y

21 / 35

DL

2D convolutions

Table of Contents

1 Reminder of Last Time and Plan for the Day

2 Reminder: Definitions

3 Convolution: introduction

4 Convolution Layers

5 2D convolutions

6 Convolutional Neural Networks

22 / 35

DL

2D convolutions

Generalization to Conv2D

(w ∗ x)i,j =
∑
m,n

wm,n · xi+m,j+n

Same concept, just over two spatial axes (height, width)

23 / 35

DL

2D convolutions

Question

What happens if you apply the kernel [−1, 1] to this image:

24 / 35

DL

2D convolutions

2D Kernels

Applying the kernel [−1, 1]

Detect vertical edges.
Source: Goodfellow, Bengio, Courville.

25 / 35

DL

2D convolutions

Images as Blocks

With channels, we can see an image as a 3D block.
And convolutions as (linear) mappings between 3D blocks that act only
locally on the first two dimensions.

26 / 35

DL

2D convolutions

Demo Visualization

See this animation
Convolution ”scans” for features by applying the same local rule
everywhere.
A neural network then attempts to learn the correct filter for the task.

27 / 35

DL

Convolutional Neural Networks

Table of Contents

1 Reminder of Last Time and Plan for the Day

2 Reminder: Definitions

3 Convolution: introduction

4 Convolution Layers

5 2D convolutions

6 Convolutional Neural Networks

28 / 35

DL

Convolutional Neural Networks

Convolutions by themselves are not expressive enough

Why?

x 7→ (w ∗ x)i,j =
∑
m,n

wm,n · xi+m,j+n

29 / 35

DL

Convolutional Neural Networks

Second Ingredient: Non-linearity

Add a ReLU.

30 / 35

DL

Convolutional Neural Networks

Third Ingredient: Pooling Layers

Motivation:
Reduce the spatial size of feature maps (width and height)
Preserve important features while reducing redundancy
Make the network more robust to small translations and noise

How it works:
Divide each feature map into small regions (e.g. 2× 2)
Apply an aggregation function in each region:

Max pooling: take the maximum value
Average pooling: take the mean value

Remark:
Pooling is not so favored anymore in modern archicture besides very
light-weight settings: downsampling by using strides is better in
practice.

31 / 35

DL

Convolutional Neural Networks

Learning Features and Hierarchical Learning

Apply a convolutional neural network:

Flatten output then put in an MLP (aka dense layers, aka fully-connected
layers) for a classification task.

32 / 35

DL

Convolutional Neural Networks

Historic(al) architectures

LeNet (1998): Hand-written digit recognition

Alexnet (2012): Breakthrough on image classification

33 / 35

DL

Convolutional Neural Networks

Learned features

We can plot the weights of the first layer in a trained network:

34 / 35

DL

Convolutional Neural Networks

In TP

Basics of pytorch
Implement backprop

35 / 35

	Reminder of Last Time and Plan for the Day
	Reminder: Definitions
	Convolution: introduction
	Convolution Layers
	2D convolutions
	Convolutional Neural Networks

