DL

Deep Learning
Class Il: Convolutional Neural Networks

Hédi Hadiji

Université Paris-Saclay - CentraleSupelec
hedi.hadiji@lI2s.centralesupelec.fr

October, 2025

1/35

DL

Reminder of Last Time and Plan for the Day

Table of Contents

Reminder of Last Time and Plan for the Day

2/35

DL

Reminder of Last Time and Plan for the Day

Last time

Last time:
m Supervised learning
m Neural nets
m Multi-Layer Perceptron + Backpropagation

Today: Convolutional Neural Networks

3/35

DL

Reminder: Definitions

Table of Contents

Reminder: Definitions

4/35

— Reminder: Definitions

Recall: MLP

Input Hidden Hidden Hidden Output
layer L, layer L, layer Ly layer L, layer Ly

5/35

DL

Reminder: Definitions

Softmax

m Given logits z € R the softmax converts them to a probability vector
z.
softmax(z); = EXP#.
iz &xp(2)
m Common loss: cross-entropy with one-hot label y,
L(z,y)=— Zy/ log softmax(z);,
j

(libraries implement it directly as a function of logits)
m Gradient (softmax + cross-entropy, compact form):

oL
97 = p—y, p = softmax(z),

and Jacobian entries dp;/9z; = pi(dj — p))-

6/35

DL

Reminder: Definitions

Recall: Backprop

m Forward: compute result and intermediate activations
m Backward: propagate gradients going from deep to shallow layers.

7/35

DL

Reminder: Definitions

Backpropagation Algorithm

Algorithm 1 Backpropagation for an L-layer network

1: Given: input x, target y, parameters {W,, b,}5_,
2: Forward pass:

3: forc=1— Ldo

4: zy + Wieap—1 + by

5 ap < J((Ze)

6: Compute loss J = L(ag, y)

7: Backward pass:

8: 0L+ Va L(aL, y) ®or(z)

9: for/=L—1downto1do
10: Op (WZ;_1(SZ+1) © UZ(ZZ)

11: Gradients:

12. fort=1— Ldo
130 Vw,J « dea_,
14: vng «— (5z

8/35

DL

Complexity of computations

m Consider an MLP with L layers. Layer | maps ni—1 — n; (weight matrix
W, of size n; x ni_4).

m Forward pass cost (per input):

Trwa = © (XL: Ni—1 n/)
=1

(matrix-vector products + activation costs).

m Backward pass cost (per input): of the same order — computing
layer deltas and weight gradients involves similar matrix products:
often quoted as roughly 2-3 times the forward cost.

m Memory: need to store activations for each layer during forward for

use in backprop:
L

Mace = e(z n,)

=0

plus parameter storage ©(>_, mi—1n).

9/35

DL

Convolution: introduction

Table of Contents

Convolution: introduction

10/35

DL

Convolution: introduction

Question: What if your task has some invariance?

Example: Speech signal

Waveform

Amplitude

0 20000 40000 60000 80000 100000 120000 140000
Time (frames)

Frequency (Hz)

N oW os o
s 8 & 2
8 8 8 8
8 8 & 8

Time (s)

Task: predict whether the word hello is pronounced 135

DL

Convolution: introduction

What happens when you input this in an MLP?

Waveform

Amplitude
s
3

0 20000 40000 60000 80000 100000 120000 140000
Time (frames)

Input Dimension: 150 000, can be downsampled to e.g. 15 000. Number
of parameters is at least 15 000 x hidden dimension, much more if
multiple layers.
Information for task is located in time.
m Not data efficient: network will need to see interesting data at every
location until all weights get updated meaningfully
m A better way would be to find a way to use the shift invariance of the
task in the model architecture.

12/35

DL

Convolution: introduction

Image processing

Same with images in 2D.

1054.jpg 1055.jpg 1056.jpg 1057.jpg 1058.jpg
19.03 kB 16.38 kB 22.88kB 20.64 kB 72.38kB
X ¥ 5
g g ¢
ok P
e VAT ML S >
1060.jpg 1061.jpg 1062.jpg 1063.jpg 1064.jpg

18.27 kB 22.91kB 20.92 kB 16.55 kB 16.22 kB

1066.pg 1067jpg 1068 jpg 1069,jpg 1070.jpg
15.88 kB 10.7 kB 79.67kB 65.72kB 67.64 kB

We build our understanding of what is in a image by through local
features that we combine together.
Idea: instead of fully-connected layers, apply a local operation.

13/35

DL

Convolution Layers

Table of Contents

Convolution Layers

14/35

DL

Convolution Layers

Formal Definition of Convolution

For an input signal x = (x¢):c[r; and kernel (wi)xex:

K—1
(x*w); = Z Wi Xtk
k=0

m K is called the kernel size
m Convolution is a product computed at every shift

m Called 'cross-correlation’ in signal processing (not true convolution:
convolution would flip the kernel)

15/35

DL

Convolution Layers

Example: Simple Convolution

Input: [1,2,3,4,5] Kernel: [1,0, —1]

yo]=1-142.0+43-(-1)=-2
y]=2-143.0+4-(-1)=-2
y2]=3-14+4.0+45-(-1)=-2

Output: [-2, -2, -2]

Outputis:
m Positive if sequence is incresing
m Negative if sequence is decreasing
= This kernel detects decreasing transitions (like a 1D edge detector).

16/35

DL

Convolution Layers

Visualizing the Operation

m Multiply elementwise — sum — slide one step — repeat.
See this demo

17/35

DL

Convolution Layers

Stride and Padding

Extra-parameters at implementation

m Stride = how many steps we slide the kernel each time.

m Stride 1: dense output
m Stride 2 : downsampled output

Stride reduces the size of the output, at the cost of losing information

m Padding = add zeros around edges to control output length.
m "valid” = no padding
® "same” = output length = input length

Padding affects how we look at the borders of the image.

18/35

DL

Convolution Layers

Multi-Channel Conv1D

Instead of sequences of numbers, we can look at sequences of vectors:
each coordinate is a channel.

We can apply a filter that maps every time index vector to another vector
instead.

Input can have multiple channels (e.g. stereo sound, multiple sensors, ...)
Each x; is itself a vector in Rehannels

Each time-component of the kernel is itself a vector, so full kernel is a

matrix w € R¥>Nehannels
1

(xxw) = Z Wi - Xtk
k=0
m Each kernel spans all input channels.
m Output is still 1-dimensional

A kernel captures interactions locally in time, but cross-channel.
Finally, we can also have multiple output channels. Then the kernel w is
represented as tensor.

19/35

DL

Convolution Layers

Why Use Conv1D?

m Captures local temporal or spatial dependencies.
m Parameter efficient: same kernel reused across positions.
m Translation invariant: pattern recognized anywhere in input.

m Commonin:
m Audio / waveform processing
m Time series forecasting
m NLP on embeddings
m Reinforcement learning (temporal signals)
Strength of deep learning: principled way of incorporating knowledge
about the task without hardcoding features.

20/35

DL

Convolution Layers

Minimal NumPy Implementation

import numpy as np

def convld(x, w, stride=1):
n, k = len(x), len(w)
out_len (n — k) // stride + 1
y = np.zeros (out_len)
for i in range (out_len):
start = i x stride
y[i] = np.sum(x[start:start+k] = w)

return y

21/35

DL

2D convolutions

Table of Contents

2D convolutions

22/35

DL

2D convolutions

Generalization to Conv2D

(w = X),‘J = Z Wm,n * Xitm,j+n

m,n

m Same concept, just over two spatial axes (height, width)

23/35

DL

2D convolutions

Question

What happens if you apply the kernel [-1, 1] to this image:

24/35

DL

2D convolutions

2D Kernels

Applying the kernel [—1,1]

Detect vertical edges.
Source: Goodfellow, Bengio, Courville.

25/35

DL

2D convolutions

Images as Blocks

—=00000

4
I

<

With channels, we can see an image as a 3D block.
And convolutions as (linear) mappings between 3D blocks that act only
locally on the first two dimensions.

26/35

DL

2D convolutions

Demo Visualization

See this animation

m Convolution "scans” for features by applying the same local rule
everywhere.

m A neural network then attempts to learn the correct filter for the task.

27/35

DL

Convolutional Neural Networks

Table of Contents

A Convolutional Neural Networks

28/35

DL

Convolutional Neural Networks

Convolutions by themselves are not expressive enough

Why?

X — (W X),‘J = Z Wm,n * Xitm,j+n

m,n

29/35

DL

Convolutional Neural Networks

Second Ingredient: Non-linearity

Add a RelU.

30/35

DL

Convolutional Neural Networks

Third Ingredient: Pooling Layers

Motivation:
m Reduce the spatial size of feature maps (width and height)
m Preserve important features while reducing redundancy
m Make the network more robust to small translations and noise

How it works:
m Divide each feature map into small regions (e.g. 2 x 2)

m Apply an aggregation function in each region:

m Max pooling: take the maximum value
m Average pooling: take the mean value

Remark:

m Pooling is not so favored anymore in modern archicture besides very
light-weight settings: downsampling by using strides is better in
practice.

31/35

DL

Convolutional Neural Networks

Learning Features and Hierarchical Learning

Apply a convolutional neural network:

Flatten output then put in an MLP (aka dense layers, aka fully-connected
layers) for a classification task.

32/35

DL

Convolutional Neural Networks

Historic(al) architectures

LeNet (1998): Hand-written digit recognition

convaluton convoluton pooing donse

mn}
H
H

. o
0
i

Gozei2s
1 foaturo map 3 featurs map.

160!
28128 image 4 foaturo map

Alexnet (2012): Breakthrough on image classification

Max T Max
pooling pooling

pooling

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896-64,896-43,264—
4096-4096-1000.

33/35

DL

Convolutional Neural Networks

Learned features

We can plot the weights of the first layer in a trained network:

Figure 3: 96 convolutional kernels of size
11 x11 x 3 learned by the first convolutional
layer on the 224 X 224 x 3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

34/35

DL

Convolutional Neural Networks

In TP

m Basics of pytorch
m Implement backprop

35/35

	Reminder of Last Time and Plan for the Day
	Reminder: Definitions
	Convolution: introduction
	Convolution Layers
	2D convolutions
	Convolutional Neural Networks

